×

Finite SAGBI bases for polynomial invariants of conjugates of alternating groups. (English) Zbl 0994.13003

Summary: It is well-known, that the ring \(\mathbb{C} [X_1,\dotsc,X_n]^{A_n}\) of polynomial invariants of the alternating group \(A_n\) has no finite SAGBI basis with respect to the lexicographical order for any number of variables \(n \geq 3\). This note proves the existence of a non-singular matrix \(\delta_n \in GL(n,\mathbb{C})\) such that the ring of polynomial invariants \(\mathbb{C} [X_1,\dotsc,X_n]^{A_n^{\delta_n}}\), where \(A_n^{\delta_n}\) denotes the conjugate of \(A_n\) with respect to \(\delta_n\), has a finite SAGBI basis for any \(n \geq 3\).

MSC:

13A50 Actions of groups on commutative rings; invariant theory
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
12Y05 Computational aspects of field theory and polynomials (MSC2010)
20D06 Simple groups: alternating groups and groups of Lie type
Full Text: DOI

References:

[1] K. N. Raghavan, Local-global principle for annihilation of local cohomology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 329 – 331. · Zbl 0818.13009 · doi:10.1090/conm/159/01513
[2] Göbel, M. (1992). Reduktion \(G\)-symmetrischer Polynome für beliebige Permutationsgruppen \(G\). Diplomarbeit. Universität Passau
[3] Manfred Göbel, Computing bases for rings of permutation-invariant polynomials, J. Symbolic Comput. 19 (1995), no. 4, 285 – 291. · Zbl 0832.13006 · doi:10.1006/jsco.1995.1017
[4] Hubert Comon , Rewriting techniques and applications, Lecture Notes in Computer Science, vol. 1232, Springer-Verlag, Berlin, 1997. · Zbl 1360.68009
[5] Manfred Göbel, A constructive description of SAGBI bases for polynomial invariants of permutation groups, J. Symbolic Comput. 26 (1998), no. 3, 261 – 272. · Zbl 0916.13011 · doi:10.1006/jsco.1998.0210
[6] Manfred Göbel, The ”smallest” ring of polynomial invariants of a permutation group which has no finite SAGBI bases w.r.t. any admissible order, Theoret. Comput. Sci. 225 (1999), no. 1-2, 177 – 184. · Zbl 0930.68172 · doi:10.1016/S0304-3975(98)00340-5
[7] Göbel, M, Walter, J. (1999). Bases for Polynomial Invariants of Conjugates of Permutation Groups. Journal of Algorithms 32(1), 58-61 CMP 99:14
[8] Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61 – 87. · Zbl 0725.13013 · doi:10.1007/BFb0085537
[9] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. · Zbl 0856.13020
[10] Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16-18 · Zbl 0655.13017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.