×

Iterative explicit simulation of 1D surges and dam-break flows. (English) Zbl 1098.76591

The one-dimensional Saint Venant equations for shallow-water flows are used to simulate the flood wave resulting from the sudden opening (or closure) of a gate or collapse of a dam. An iterative explicit characteristics-based finite-difference method, based on the explicit finite analytic method, is proposed to discretize the dynamic equation, and the conservative control volume method is used for the discretization of the continuity equation. Surge and dam-break flows in a horizontal, rectangular and frictionless channel were first considered, under such conditions the analytic solutions exist. For the surge simulation, numerical results of the proposed scheme are nearly identical to those obtained from the Preissmann scheme. For the dam-break simulations addressing three ratios of tailwater depth to water depth in the reservoir, the proposed scheme, as compared with the analytic solutions, yields better results than those obtained by the MacCormack scheme, the Gabutti scheme, and Jha et al.’s flux splitting scheme [J. Hydraul. Res. 34, No. 5, 605–621 (1996)]. As the depth ratio approaches zero, the accuracy of the proposed scheme is still satisfactory, even with the dry-bed condition. Investigations then were made for more realistic dam-break flow waves propogating in a sloped and frictional channel. Lacking analytic solutions, the simulating results from the proposed scheme as well as those from Chen’s scheme [J. Hydraul. Div. 106 (HY4), 535–556 (1980)] were compared with the laboratory data collected in 1960–1961 at the United States Army Engineer Waterways Experiments Station (WES). An assumed initial flow was required for the computer-simulated condition in Chen’s model. However, this is not the case in the proposed model, i.e., a real dry-bed condition was set as the initial condition in the downstream channel of the dam. The consistency between the two simulated results is obvious compared with the experimental data.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76B07 Free-surface potential flows for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Practical Aspects of Computational River Hydraulics. Pitman: London, 1980.
[2] Rapidly Varied Flow in Power and Pumping Canals in Unsteady Flow in Open Channel. Water Resources Publications: Fort Collins, CO, 1975: Ch. 14.
[3] Yang, International Journal for Numerical Methods in Fluids 14 pp 361– (1992) · Zbl 0825.76536 · doi:10.1002/fld.1650140308
[4] Aguirre-Pe, Journal of Hydraulics Research 33 pp 17– (1995) · doi:10.1080/00221689509498681
[5] Garcia-Navarro, Journal of Hydraulics Research 30 pp 95– (1992) · doi:10.1080/00221689209498949
[6] Garcia, International Journal for Numerical Methods in Fluids 6 pp 259– (1986) · Zbl 0591.76027 · doi:10.1002/fld.1650060502
[7] Fennema, Water Resources Research 22 pp 1923– (1986) · doi:10.1029/WR022i013p01923
[8] Jha, Journal of Hydraulics Research 34 pp 605– (1996) · doi:10.1080/00221689609498461
[9] Jha, Journal of Hydraulics Engineering, ASCE 120 pp 461– (1994) · doi:10.1061/(ASCE)0733-9429(1994)120:4(461)
[10] Fennema, Journal of Hydraulics Research 25 pp 41– (1987) · doi:10.1080/00221688709499287
[11] Jha, Journal of Hydroscience Hydraulics Engineering, JSCE 11 pp 69– (1994)
[12] Alcrudo, International Journal for Numerical Methods in Fluids 14 pp 1009– (1992) · Zbl 0825.76539 · doi:10.1002/fld.1650140902
[13] Glaister, Journal of Hydraulics Research 26 pp 293– (1988) · doi:10.1080/00221688809499213
[14] Glaister, International Journal for Numerical Methods in Fluids 16 pp 629– (1993) · Zbl 0772.76047 · doi:10.1002/fld.1650160706
[15] Mingham, Journal of Hydraulics Engineering, ASCE 124 pp 605– (1998) · doi:10.1061/(ASCE)0733-9429(1998)124:6(605)
[16] Mingham, Journal of Hydraulics Research 38 pp 49– (2000) · doi:10.1080/00221680009498358
[17] Toro, Philosophical Transactions of the Royal Society of London, A 338 pp 43– (1992) · Zbl 0747.76027 · doi:10.1098/rsta.1992.0002
[18] Yang, Journal of Hydraulics Research 31 pp 19– (1993) · doi:10.1080/00221689309498857
[19] Hu, International Journal for Numerical Methods in Fluids 28 pp 1241– (1998) · Zbl 0931.76051 · doi:10.1002/(SICI)1097-0363(19981130)28:8<1241::AID-FLD772>3.0.CO;2-2
[20] Savic, Journal of Hydraulics Research 31 pp 187– (1993) · doi:10.1080/00221689309498844
[21] Baines, Advances in Water Resources 15 pp 89– (1992) · doi:10.1016/0309-1708(92)90035-Z
[22] Louaked, Journal of Hydraulics Research 36 pp 363– (1998) · doi:10.1080/00221689809498624
[23] Garcia-Navarro, Journal of Hydraulics Research 32 pp 721– (1994) · doi:10.1080/00221689409498711
[24] Garcia-Navarro, International Journal for Numerical Methods in Fluids 18 pp 273– (1994) · Zbl 0792.76046 · doi:10.1002/fld.1650180304
[25] Moin, Proceedings of the VII International Conference on Computer Methods in Water Resources 2 pp 363– (1988)
[26] Hicks, Journal of Hydraulics Engineering, ASCE 118 pp 337– (1992) · doi:10.1061/(ASCE)0733-9429(1992)118:2(337)
[27] Hicks, Journal of Hydraulics Engineering, ASCE 123 pp 464– (1997) · doi:10.1061/(ASCE)0733-9429(1997)123:5(464)
[28] Katopodes, Journal of Hydraulics Engineering, ASCE 110 pp 450– (1984) · doi:10.1061/(ASCE)0733-9429(1984)110:4(450)
[29] Berger, Journal of Hydraulics Engineering, ASCE 121 pp 710– (1995) · doi:10.1061/(ASCE)0733-9429(1995)121:10(710)
[30] Katopodes, Journal of Hydraulics Engineering, ASCE 112 pp 456– (1986) · doi:10.1061/(ASCE)0733-9429(1986)112:6(456)
[31] Alam, Journal of Hydraulics Engineering, ASCE 121 pp 118– (1995) · doi:10.1061/(ASCE)0733-9429(1995)121:2(118)
[32] Open Channel Flow. Prentice-Hall: New Jersey, 1966.
[33] Fraccarollo, Journal of Hydraulics Research 33 pp 843– (1995) · doi:10.1080/00221689509498555
[34] Zhang, Journal of Hydraulics Research 30 pp 211– (1992) · doi:10.1080/00221689209498935
[35] Numerical Heat Transfer and Fluid Flow. McGraw-Hill Inc.: New York, NY, 1980. · Zbl 0521.76003
[36] Bellos, Journal of Hydraulics Engineering, ASCE 113 pp 1510– (1987) · doi:10.1061/(ASCE)0733-9429(1987)113:12(1510)
[37] Finite element solution of the Lagrangian equations of unsteady free-surface flows on dry river beds. Finite Elements in Water Resources, et al. (eds). Springer: Berlin, Germany, 1982: 4.25-4.35.
[38] Numerical Solutions of Unsteady Navier-Stokes Equations Using Explicit Finite Analytic Scheme, PhD Thesis, The University of Iowa, Iowa, 1994.
[39] Basco, Journal of Hydraulics Engineering, ASCE 115 pp 950– (1989) · doi:10.1061/(ASCE)0733-9429(1989)115:7(950)
[40] Kobayashi, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE 113 pp 282– (1987) · doi:10.1061/(ASCE)0733-950X(1987)113:3(282)
[41] Floods resulting from suddenly breached dams. Miscellaneous paper No. 2-374. United State Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss., Report 1, Conditions of minimum resistance, 1960; Report 2, Conditions of high resistance, 1961.
[42] Whitham, Proceedings of the Royal Society of London, Series A 227 pp 399– (1995) · Zbl 0064.19804 · doi:10.1098/rspa.1955.0019
[43] Chen, Journal of Hydraulics Division 106 pp 535– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.