×

Simulation of pressure-tooling wire-coating flow with Phan-Thien/Tanner models. (English) Zbl 1098.76575

Summary: Annular pressure-tooling extrusion is simulated for a low density polymer melt using a Taylor-Petrov-Galerkin finite element scheme. This represents industrial-scale wire-coating. Viscoelastic fluids are modeled via three forms of Phan-Thien/Tanner (PTT) constitutive laws employed for short-die and full specification pressure-tooling. Effects of variation in Weissenberg number (We) and polymeric viscosity are investigated. Particular attention is paid to mesh refinement to predict accurate results. The impact of variation in shear-thinning and strain-softening properties is considered upon the modelling predictions. For the short-die flow, the influence of the lack of strain softening is identified. For the full-die flow and more severe deformation rates, the linear PTT model failed to converge. In contrast, the exponential PTT model is found to be more stable numerically and to adequately reflect the material response. Comparing short-die and full-die pressure-tooling results, shear rates increase 10-fold, while strain rates increase one hundred times.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
Full Text: DOI

References:

[1] Matallah, Journal of Non-Newtonian Fluid Mechanics 90 pp 217– (2000) · Zbl 0982.76007 · doi:10.1016/S0377-0257(99)00079-8
[2] Binding, Journal of Non-Newtonian Fluid Mechanics 64 pp 191– (1996) · doi:10.1016/0377-0257(96)01447-4
[3] Gunter, International Journal for Numerical Methods in Fluids 23 pp 691– (1996) · Zbl 0884.76039 · doi:10.1002/(SICI)1097-0363(19961015)23:7<691::AID-FLD485>3.0.CO;2-G
[4] Mutlu, Journal of Non-Newtonian Fluid Mechanics 74 pp 1– (1998) · Zbl 0956.76008 · doi:10.1016/S0377-0257(97)00069-4
[5] Mutlu, International Journal for Numerical Methods in Fluids 26 pp 697– (1998) · Zbl 0913.76051 · doi:10.1002/(SICI)1097-0363(19980330)26:6<697::AID-FLD680>3.0.CO;2-Z
[6] Baaijens, Journal of Non-Newtonian Fluid Mechanics 68 pp 173– (1997) · doi:10.1016/S0377-0257(96)01519-4
[7] Evaluation of constitutive equation for polymer melts and solutions in complex flows. Thesis, Eindhoven University of Technology, Netherlands, 1994.
[8] Ngamaramvaranggul, International Journal for Numerical Methods in Fluids 33 pp 961– (2000) · Zbl 0984.76049 · doi:10.1002/1097-0363(20000815)33:7<961::AID-FLD39>3.0.CO;2-W
[9] Ngamaramvaranggul, International Journal for Numerical Methods in Fluids 33 pp 993– (2000) · Zbl 0984.76048 · doi:10.1002/1097-0363(20000815)33:7<993::AID-FLD40>3.0.CO;2-A
[10] Ngamaramvaranggul, International Journal for Numerical Methods in Fluids 36 pp 539– (2001) · Zbl 1051.76036 · doi:10.1002/fld.145
[11] Tadmor, Polymer Engineering Science 14 pp 124– (1974) · doi:10.1002/pen.760140208
[12] Caswell, Journal of Polymer Science 18 pp 416– (1978)
[13] Pittman, Plastic and Rubber Processes and Applications 6 pp 153– (1986)
[14] Mitsoulis, Polymer Engineering Science 96 pp 171– (1986) · doi:10.1002/pen.760260210
[15] Mitsoulis, Polymer Engineering Science 28 pp 291– (1988) · doi:10.1002/pen.760280505
[16] Wagner, Advances in Polymer Technology 5 pp 305– (1985) · doi:10.1002/adv.1985.060050404
[17] Mitsoulis, Polymer Engineering Science 24 pp 707– (1984) · doi:10.1002/pen.760240913
[18] Computer aided design of wire coating dies. ANTEC 91, 1991; 58-61.
[19] Han, Polymer Engineering Science 18 pp 1019– (1978) · doi:10.1002/pen.760181309
[20] Mitsoulis, Advances in Polymer Technology 6 pp 467– (1986) · doi:10.1002/adv.1986.060060405
[21] Carley, Polymer Engineering Science 19 pp 1178– (1979) · doi:10.1002/pen.760191609
[22] Chung, Polymer Engineering Science 26 pp 410– (1986) · doi:10.1002/pen.760260606
[23] SPE ANTEC Tech. Paper, 20, p. 8, 1974.
[24] Viscoelastic computations of polymeric wire-coating flows. International Journal of Numerical Methods in Heat Fluid Flow, under review 2001, available as CSR 13-2000, University of Wales, Swansea.
[25] Phan-Thien, Journal of Non-Newtonian Fluid Mechanics 2 pp 353– (1977) · Zbl 0361.76011 · doi:10.1016/0377-0257(77)80021-9
[26] Phan-Thien, Journal of Rheology 22 pp 259– (1978) · Zbl 0391.76010 · doi:10.1122/1.549481
[27] Dynamics of polymeric liquids. Fluid Mechanics, vol. 1, 2nd edn. Wiley: New York, 1987.
[28] Carew, Journal of Non-Newtonian Fluid Mechanics 50 pp 253– (1993) · Zbl 0804.76065 · doi:10.1016/0377-0257(93)80034-9
[29] An algorithm for the three-dimensional transient simulation of non-Newtonian fluid flows. Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials, NUMETA 87, (eds). Nijhoff, Kluwer: Dordrecht, vol. 2, T12/1-11, 1987.
[30] Numerical simulation of non-Newtonian flow. Rheology, Series 1. Elsevier Science Publishers: Oxford, 1984.
[31] Boundary-element analysis of forming processes. Numerical Modelling of Material Deformation Processes: Research, Development and Application. (eds). Springer-Verlag: London, 1992.
[32] Paper Presented at the Int. Congr. Rheol., 5th Kyoto, Japan, October, 1968.
[33] Marrucci, Rheologica Acta 12 pp 269– (1973) · doi:10.1007/BF01635115
[34] Tanner, Transactions of the Society for Rheology 12 pp 155– (1968) · doi:10.1122/1.549104
[35] Han, Journal of Applied Polymer Science 19 pp 3257– (1975) · doi:10.1002/app.1975.070191212
[36] Hudson, Transactions of the Soceity for Rheology 18 pp 541– (1974) · doi:10.1122/1.549347
[37] Numerical simulation of non-Newtonian free surface flows. Ph.D. Thesis, University of Wales, Swansea, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.