Adaptive control of nonlinearly parameterized systems with a triangular structure. (English) Zbl 1031.93109
By generalizing an earlier result [the author et al., Syst. Control Lett. 37, 267-274 (1999; Zbl 0942.93016)] to all \(n\)th order nonlinear systems with triangular structure and nonlinear parametrization, the authors show that a globally stabilizing and tracking controller guaranteeing a desired precision can be determined. For estimating the unknown parameters, some functions generated by using a min-max optimization problem are introduced in the adaptive controller. Finally, an illustrative example is presented.
Reviewer: Mihail Voicu (Iaşi)
MSC:
93C40 | Adaptive control/observation systems |
93D21 | Adaptive or robust stabilization |
90C47 | Minimax problems in mathematical programming |
Keywords:
Triangular system; nonlinear parametrization; adaptive control; global stability; nonlinear system; adaptive stabilization; tracking controller; min-max optimizationCitations:
Zbl 0942.93016References:
[1] | Annaswamy, A. M.; Loh, A. P.; Skantze, F. P., Adaptive control of continuous time systems with convex/concave parametrization, Automatica, 34, 33-49 (1998) · Zbl 0910.93049 |
[2] | Annaswamy, A. M.; Thanomsat, C.; Mehta, N.; Loh, A. P., Applications of adaptive controllers based on nonlinear parametrization, ASME Journal of Dynamic Systems, Measurement, and Control, 120, 477-487 (1998) |
[3] | Armstrong-Hélouvry, B.; Dupont, P.; Canudas de Wit, C., A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30, 7, 1083-1138 (1994) · Zbl 0800.93424 |
[4] | Bosković, J. D., Adaptive control of a class of nonlinearly parametrized plants, IEEE Transactions on Automatic Control, 43, 930-934 (1998) · Zbl 0952.93071 |
[5] | Fomin, V.; Fradkov, A.; Yakubovich, V., Adaptive control of dynamical systems (1981), Nauka: Nauka Moscow · Zbl 0522.93002 |
[6] | Hotzel, R., & Karsenti, L. (1997). Tracking control scheme for uncertain systems with nonlinear parametrization. Proceedings of the European control conference; Hotzel, R., & Karsenti, L. (1997). Tracking control scheme for uncertain systems with nonlinear parametrization. Proceedings of the European control conference · Zbl 0957.93074 |
[7] | Kanellakopoulos, I.; Kokotovic, P. V.; Morse, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transactions on Automatic Control, 36, 1241-1253 (1991) · Zbl 0768.93044 |
[8] | Kojić, A. (2001). Stable identification and control in nonlinear regression problems; Kojić, A. (2001). Stable identification and control in nonlinear regression problems |
[9] | Kojić, A., & Annaswamy, A. M. (2000). Parameter convergence in systems with convex/concave parameterization. The 2000 American control conference; Kojić, A., & Annaswamy, A. M. (2000). Parameter convergence in systems with convex/concave parameterization. The 2000 American control conference |
[10] | Kojić, A.; Annaswamy, A. M.; Loh, A.-P.; Lozano, R., Adaptive control of a class of nonlinear systems with convex/concave parameterization, Systems and Control Letters, 37, 267-274 (1999) · Zbl 0942.93016 |
[11] | Kornenberg, M. J.; Hunter, I. W., The identification of nonlinear biological systems: LNL cascade models, Biological Cybernetics, 55, 125-134 (1986) · Zbl 0611.92001 |
[12] | Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V., Adaptive nonlinear control without overparameterization, Systems and Control Letters, 19, 177-186 (1992) · Zbl 0763.93043 |
[13] | Loh, A. P., Annaswamy, A. M., & Skantze, F. P. (1999). Adaptation in the presence of a general nonlinear parametrization: An error model approach. IEEE Transactions on Automatic ControlAC-44; Loh, A. P., Annaswamy, A. M., & Skantze, F. P. (1999). Adaptation in the presence of a general nonlinear parametrization: An error model approach. IEEE Transactions on Automatic ControlAC-44 · Zbl 0958.93051 |
[14] | Narendra, K. S.; Annaswamy, A. M., Stable adaptive systems (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0758.93039 |
[15] | Netto, M. S., Moya, P., Ortega, R., & Annaswamy, A. M. (1999). Adaptive control of a class of first-order nonlinearly parametrized systems. Proceedings of the CDC; Netto, M. S., Moya, P., Ortega, R., & Annaswamy, A. M. (1999). Adaptive control of a class of first-order nonlinearly parametrized systems. Proceedings of the CDC · Zbl 1001.93040 |
[16] | Ortega, R., Some remarks on adaptive neuro-fuzzy systems, International Journal of Adaptive Control and Signal Processing, 10, 79-83 (1996) · Zbl 0850.93457 |
[17] | Sastry, S. S.; Bodson, M., Adaptive control: Stability, convergence, and robustness (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0721.93046 |
[18] | Seto, D.; Annaswamy, A. M.; Baillieul, J., Adaptive control of nonlinear systems with a triangular structure, IEEE Transactions on Automatic Control, 39, 7, 1411-1428 (1994) · Zbl 0806.93034 |
[19] | Taylor, D. G.; Kokotovic, P. V.; Marino, R.; Kanellakopoulos, I., Adaptive regulation of nonlinear systems with unmodeled dynamics, IEEE Transactions on Automatic Control, 34, 405-412 (1989) · Zbl 0671.93033 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.