×

An associative algorithm. (English) Zbl 0954.39015

The paper investigates associativity properties of operations derived from algorithms concerning interval filling sequences whose definition is due to Z. Daróczy, A. Járai, and I. Kátai [Acta Sci. Math. (Szeged) 50, 337-350 (1986; Zbl 0619.10007)].
A sequence \(\lambda=(\lambda_n)\) is called interval filling if \(L(\lambda):=\sum_{n=1}^\infty\lambda_n<\infty\) and, for any \(x\in I:=[0,L(\lambda)]\), there exists a sequence \(\delta_n\in\{0,1\}\) such that \(x=\sum_{n=1}^\infty \delta_n\lambda_n\). A sequence of functions \(\alpha_n:I\to\{0,1\}\) is called an algorithm with respect to \(\lambda\) if \(x=\sum_{n=1}^\infty \alpha_n(x)\lambda_n\) for all \(x\in I\).
Having an algorithm \(\alpha=(\alpha_n)\), an operation \(\circ:I\times I\to I\) can be defined in the following way: \[ x\circ y=\sum_{n=1}^\infty \alpha_n(x)\alpha_n(y)\lambda_n \qquad (x,y\in I). \] The first main result of the paper shows that \(\alpha\) is associative if and only if \(\alpha_n(x\circ y)=\alpha_n(x)\alpha_n(y)\) for all \(n\geq 1\), \(x,y\in I\). The second main result states that the regular algorithm \(\varepsilon=(\varepsilon_n)\) defined by the recursion \[ \varepsilon_n(x) =\begin{cases} 0, &\qquad\text{if } x<\sum_{i=1}^{n-1}\varepsilon_i(x)\lambda_i+\lambda_n, \\ 1, &\qquad\text{if } x\geq\sum_{i=1}^{n-1}\varepsilon_i(x)\lambda_i+\lambda_n, \end{cases} \qquad (n\in\mathbb{N}, x\in I) \] is associative for all interval filling sequences.

MSC:

39B22 Functional equations for real functions

Citations:

Zbl 0619.10007