×

Isomorphisms between Artin-Schreier towers. (English) Zbl 0983.11074

Let \(L_n\) be an extension of degree \(p^n\) of \(\mathbb{F}_q\) (a finite field with \(q=p^d\) elements). \(L_n\) is said to be an Artin-Schreier tower if there exists a chain of Artin-Schreier extensions: \[ L_n\supset L_{n-1}\supset\cdots \supset L_1\supset L_0= \mathbb{F}_q \] defined by \(L_{k+1}= L_k(x_{k+1})\) with \(x_{k+1}^p- x_{k+1}- a_k=0\), where \(a_k\in L_k\). The main result proved in this paper is: An isomorphism between two Artin-Schreier towers \(L_n\) and \(M_n\) of degree \(p^n\) over \(\mathbb{F}_q\) can be computed in \(O(n^6 p^n)\) operations in \(\mathbb{F}_q\) for fixed \(q\) and \(n\to \infty\). This result is relevant in the study of the complexity of computing the torsion points of abelian varieties, since the field of definition of \(p^n\)-torsion points of an abelian variety over \(\mathbb{F}_q\) is an Artin-Schreier tower.

MSC:

11Y40 Algebraic number theory computations
12E20 Finite fields (field-theoretic aspects)
11G20 Curves over finite and local fields
Full Text: DOI

References:

[1] David G. Cantor, On arithmetical algorithms over finite fields, J. Combin. Theory Ser. A 50 (1989), no. 2, 285 – 300. · Zbl 0696.12013 · doi:10.1016/0097-3165(89)90020-4
[2] Jean-Marc Couveignes, Computing \?-isogenies using the \?-torsion, Algorithmic number theory (Talence, 1996) Lecture Notes in Comput. Sci., vol. 1122, Springer, Berlin, 1996, pp. 59 – 65. · Zbl 0903.11030 · doi:10.1007/3-540-61581-4_41
[3] Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995) AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 21 – 76. · Zbl 0915.11036
[4] Reynald Lercier and François Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in Cryptology, EUROCRYPT 95 , Lecture Notes in Computer Science, vol. 921, Springer, 1995, pp. 79-94. · Zbl 0903.11029
[5] Reynald Lercier and François Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, Advances in cryptology — EUROCRYPT ’95 (Saint-Malo, 1995) Lecture Notes in Comput. Sci., vol. 921, Springer, Berlin, 1995, pp. 79 – 94. · Zbl 0903.11029 · doi:10.1007/3-540-49264-X_7
[6] René Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 219 – 254. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). · Zbl 0852.11073
[7] Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’institut de mathématique de l’université de Nancago, VII. Hermann, Paris, 1959 (French). · Zbl 0097.35604
[8] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134 – 144. · Zbl 0147.20303 · doi:10.1007/BF01404549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.