×

Evolution Galerkin methods for hyperbolic systems in two space dimensions. (English) Zbl 0951.35076

Three new evolution Galerkin schemes for multidimensional hyperbolic systems are presented. The wave equations system is considered in more details. An algorithm for constructing of an evolution Galerkin scheme consists of two steps: first an integral representation of the exact evolution operator is obtained; then the solution is projected in a finite element space. A theoretical analysis of stability properties of the scheme is given and error estimates are obtained. New evolution Galerkin schemes are compared with several existing schemes by means of calculations of test problems in two space dimensions on rectangular grids.

MSC:

35L45 Initial value problems for first-order hyperbolic systems
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] J.P. Benqué, G. Labadie, and J. Ronat, A new finite element method for the Navier-Stokes equations coupled with a temperature equation. In T. Kawai, editor, Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, North-Holland, 1982, pp. 295-301. · Zbl 0508.76049
[2] Achi Brandt and Shlomo Ta’asan, Multigrid solutions to quasi-elliptic schemes, Progress and supercomputing in computational fluid dynamics (Jerusalem, 1984) Progr. Sci. Comput., vol. 6, Birkhäuser Boston, Boston, MA, 1985, pp. 235 – 255. · Zbl 0599.76033
[3] D. S. Butler, The numerical solution of hyperbolic systems of partial differential equations in three independent variables, Proc. Roy. Soc. London. Ser. A 255 (1960), 232 – 252. · Zbl 0099.41501 · doi:10.1098/rspa.1960.0065
[4] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[5] P. N. Childs and K. W. Morton, Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal. 27 (1990), no. 3, 553 – 594. · Zbl 0728.65086 · doi:10.1137/0727035
[6] M.C. Cline and J.D. Hoffman, Comparison of characteristic schemes for three-dimensional, steady, isentropic flow, AIAA J. 10(11) 1972, 1452-1458. · Zbl 0251.76047
[7] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. · Zbl 0099.29504
[8] Jim Douglas Jr. and Thomas F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982), no. 5, 871 – 885. · Zbl 0492.65051 · doi:10.1137/0719063
[9] M. Fey, Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen, Dissertation, ETH Zürich, 1993.
[10] M. Fey and R. Jeltsch, A simple multidimensional Euler scheme, Proceedings of the First European Computational Fluid Dynamics Conference, ECCOMAS’92 vol.I, Ch.Hirsch et.al., editors, Elsevier Science Publishers, Amsterdam, 1992. · Zbl 0945.65518
[11] T.N. Krishnamurti, Numerical integration of primitive equations by a quasi-Lagrangian advective scheme, J. Appl. Meteorology 1 (1962), 508-521.
[12] P. Lesaint, Numerical solution of the equation of continuity, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 199 – 222.
[13] Randall J. LeVeque, Cartesian grids and rotated difference methods for multi-dimensional flow, Proceedings of International Conference on Scientific Computation (Hangzhou, 1991) Ser. Appl. Math., vol. 1, World Sci. Publ., River Edge, NJ, 1992, pp. 76 – 85.
[14] Peixiong Lin, K. W. Morton, and E. Süli, Euler characteristic Galerkin scheme with recovery, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 7, 863 – 894 (English, with English and French summaries). · Zbl 0798.65090
[15] Peixiong Lin, K. W. Morton, and E. Süli, Characteristic Galerkin schemes for scalar conservation laws in two and three space dimensions, SIAM J. Numer. Anal. 34 (1997), no. 2, 779 – 796. · Zbl 0880.65079 · doi:10.1137/S0036142993259299
[16] M. Lukácová-Medvi1=d to 1.051d/ová, K.W. Morton, and G. Warnecke, The second order evolution Galerkin schemes for hyperbolic systems, In preparation.
[17] M. Lukácová-Medvi1=d to 1.051d/ová, K.W. Morton, and G. Warnecke, On the evolution Galerkin method for solving multidimensional hyperbolic systems, Proceedings of the Second European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), World Scientific Publishing Company, Singapore, 1998, pp. 445-452. · Zbl 0968.65070
[18] K. W. Morton, Approximation of multidimensional hyperbolic partial differential equations, The state of the art in numerical analysis (York, 1996) Inst. Math. Appl. Conf. Ser. New Ser., vol. 63, Oxford Univ. Press, New York, 1997, pp. 473 – 502. · Zbl 0904.65092
[19] K. W. Morton, Numerical solution of convection-diffusion problems, Applied Mathematics and Mathematical Computation, vol. 12, Chapman & Hall, London, 1996. · Zbl 0861.65070
[20] K. W. Morton, On the analysis of finite volume methods for evolutionary problems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2195 – 2222. · Zbl 0927.65119 · doi:10.1137/S0036142997316967
[21] K.W. Morton and P.L. Roe, Vorticity-preserving Lax-Wendroff type schemes for the system wave equation, submitted for publication. · Zbl 0994.35011
[22] Stella Ostkamp, Multidimensional characteristic Galerkin schemes and evolution operators for hyperbolic systems, DLR-Forschungsbericht [DLR-Research Report], vol. 95, Deutsche Forschungsanstalt für Luft- und Raumfahrt, Cologne, 1995 (English, with English and German summaries). Dissertation, Universität Hannover, Hannover, 1995. · Zbl 0831.76067
[23] S. Ostkamp, Multidimensional characteristic Galerkin methods for hyperbolic systems, Math. Methods Appl. Sci. 20 (1997), no. 13, 1111 – 1125. , https://doi.org/10.1002/(SICI)1099-1476(19970910)20:133.0.CO;2-1 · Zbl 0880.35065
[24] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math. 38 (1981/82), no. 3, 309 – 332. · Zbl 0505.76100 · doi:10.1007/BF01396435
[25] Phoolan Prasad and Renuka Ravindran, Canonical form of a quasilinear hyperbolic system of first order equations, J. Math. Phys. Sci. 18 (1984), no. 4, 361 – 364. · Zbl 0581.35047
[26] A. Sivasankara Reddy, V. G. Tikekar, and Phoolan Prasad, Numerical solution of hyperbolic equations by method of bicharacteristics, J. Math. Phys. Sci. 16 (1982), no. 6, 575 – 603. · Zbl 0516.65078
[27] A. Staniforth and J. Côté, Semi-Lagrangian integration schemes and their application to environmental flows, Monthly Weather Rev. 119(9) (1991), 2206-2223.
[28] E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math. 53 (1988), 459-483. · Zbl 0637.76024
[29] M. Tanguay, A. Simard, and A. Staniforth, A three-dimensional semi-Lagrangian scheme for the Canadian regional finite-element forecast model, Monthly Weather Rev. 117 (1989), 1861-1871.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.