×

On the \(p\)-affine surface area. (English) Zbl 0964.52005

In 1998 the authors associated to a given compact convex body \(K\) in the space \(\mathbb{R}^n\) with inner points and the Santaló point at the origin and to a positive real number \(t\) the Santaló regions \[ S(K,t):= \left\{x\in \text{int}(K); {|K||K^x|\over v^2_n}\leq t\right\}= \left\{x \in\text{int} (K);\int_{K^0} {dy\over(1-\langle x,y \rangle)^{n+1}} \leq{v^2_n \over |K|} t\right\} \] where \(|K||K^x|\) denotes the volume product of \(K\) and its polar body \(K^x\) with respect to \(x\in\text{int} (K)\) and \(v_n\) is the volume of the unit ball [see M. Meyer and E. Werner, Trans. Am. Math. Soc. 350, No. 11, 4569-4591 (1998; Zbl 0917.52004)]. They proved the following geometric interpretation of the affine surface area \(O_1(K)\) of \(K\) (slightly modificated) \[ O_1(K)= C_n\lim_{t\to \infty} {|K|- |S(K,{|K|\over v_n^2}t) |\over t^{-{2 \over n+1}}} (C_n \text{const}>0). \] The purpose of the paper is to show a comparable geometric interpretation of Lutwak’s \(p\)-affine surface area \[ O_p(K) :=\int_{\partial K}\left( {\kappa(x) \over\langle x,N(x) \rangle^{(p-1)^{n\over p}}}\right)^{p\over n+p} d\mu_K(x)\quad (p>-n) \] \((\kappa\) Gauss curvature, \(N\) outer unit normal vector, \(\mu_K\) surface area element of \(\partial K)\)
1) by means of suitably generalized Santaló-bodies (theorem 6) and 2) by means of the convex floating bodies of \(K\) (theorem 8). This is realized in the case of a body \(K\) with boundary of class \({\mathcal C}^3_+\) resp. class \({\mathcal C}^2_+\). Hereby in both interpretations of \(O_p(K)\) especially the polar body \(K^0\) of \(K\) with respect to the origin is involved.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A38 Length, area, volume and convex sets (aspects of convex geometry)
53A15 Affine differential geometry

Citations:

Zbl 0917.52004

References:

[1] Bárány, I., Random polytopes in smooth convex bodies, Mathematika, 39, 81-92 (1992) · Zbl 0765.52009
[2] Bárány, I., Affine perimeter and limit shape, J. Reine Angew. Math., 71-84 (1997) · Zbl 0864.52010
[3] Blaschke, W., Vorlesungen über Differentialgeometrie. II Affine Differentialgeometrie (1923), Springer-Verlag: Springer-Verlag Berlin · JFM 49.0499.01
[4] Dolzmann, G.; Hug, D., Equality of two representations of extended affine surface area, Arch. Math., 65, 352-356 (1995) · Zbl 0838.52010
[5] Fradelizi, M., Hyperplane sections of convex bodies in isotropic position, Beiträge Algebra Geom., 40, 163-183 (1999) · Zbl 0966.52004
[6] Glasauer, S.; Gruber, P. M., Asymptotic estimates for best and stepwise approximation of convex bodies, III, Forum Math., 9, 383-404 (1997) · Zbl 0889.52006
[7] Gruber, P. M., Aspects of approximation of convex bodies, Handbook of Convex Geometry (1993), North-Holland: North-Holland Amsterdam, p. 321-345 · Zbl 0791.52007
[8] Gruber, P. M., Asymptotic estimates for best and stepwise approximation of convex bodies, II, Forum Math., 5, 521-538 (1993) · Zbl 0788.41020
[9] Hug, D., Contributions to affine surface area, Manuscripta Math., 91, 283-301 (1996) · Zbl 0871.52004
[10] Hug, D., Curvature relations and affine surface area for a general convex body and its polar, Results Math., 29, 233-248 (1996) · Zbl 0861.52003
[11] Leichtweiss, K., Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar., 21, 453-474 (1986) · Zbl 0561.53012
[12] Leichtweiss, K., Zur Affinoberfläsche konvexer Körper, Manuscripta Math., 56, 429-464 (1986) · Zbl 0588.52011
[13] M. Ludwig, Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika, in press.; M. Ludwig, Asymptotic approximation of smooth convex bodies by general polytopes, Mathematika, in press. · Zbl 0992.52002
[14] Lutwak, E., On some affine isoperimetric inequalities, J. Differential Geom., 23, 1-13 (1986) · Zbl 0592.52005
[15] Lutwak, E., Extended affine surface area, Adv. Math., 85, 39-68 (1991) · Zbl 0727.53016
[16] Lutwak, E., The Brunn-Minkowski-Firey theory, II. Affine and geominimal surface areas, Adv. Math., 118, 244-294 (1996) · Zbl 0853.52005
[17] E. Lutwak and V. Oliker, On the regularity of the solution of a generalization of the Minkowski problem, J. Differential Geom.41, 227-246.; E. Lutwak and V. Oliker, On the regularity of the solution of a generalization of the Minkowski problem, J. Differential Geom.41, 227-246. · Zbl 0867.52003
[18] Meyer, M.; Reisner, S., A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces, Geom. Dedicata, 37, 327-337 (1991) · Zbl 0731.52002
[19] Meyer, M.; Werner, E., the Santaló-regions of a convex body, Trans. Amer. Math. Soc., 350, 4569-4591 (1998) · Zbl 0917.52004
[20] Milman, V. D.; Pajor, A., Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space, (Lindenstrauss, J.; Milman, V. D., GAFA. GAFA, Lecture Notes in Math., 1376 (1989), Springer-Verlag: Springer-Verlag Berlin), 64-104 · Zbl 0679.46012
[21] Petty, C. M., Projection bodies, Proc. Coll. Convexity, Copenhagen, 1965 (1967), Kobenhavns Univ. Mat. Inst, p. 234-241 · Zbl 0152.20601
[22] Petty, C. M., Isoperimetric problems, Proc. Conf. Convexity and Combinatorial Geometry (1971), Univ. Oklahoma, p. 26-41 · Zbl 0245.52007
[23] Schmuckenschläger, M., The distribution function of the convolution square of a convex symmetric body in \(\textbf{R}^n \), Israel J. Math., 78, 309-334 (1992) · Zbl 0774.52004
[24] Schneider, R., Random approximation of convex sets, J. Microscopy, 151, 211-227 (1988) · Zbl 1256.52004
[25] Schütt, C., On the affine surface area, Proc. Amer. Math. Soc., 118, 1213-1218 (1993) · Zbl 0784.52004
[26] Schütt, C., Random polytopes and affine surface area, Math. Nachr., 170, 227-249 (1994) · Zbl 0818.52004
[27] Schütt, C.; Werner, E., The convex floating body, Math. Scand., 66, 275-290 (1990) · Zbl 0739.52008
[28] Werner, E., Illumination bodies and affine surface area, Studia Math., 110, 257-269 (1994) · Zbl 0813.52007
[29] Werner, E., A general geometric construction of affine surface area, Studia Math., 132, 227-238 (1999) · Zbl 0927.52008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.