×

A coherent approach to pseudomonads. (English) Zbl 0971.18008

A monad (= triple) on an object \(A\) consists of an endomorphism \(t\) on \(A\) together with multiplication and unit 2-cells which satisfy associativity and unital equalities. This notion makes sense in any 2-category (or even any bicategory). A pseudomonad has the same data plus coherent invertible 3-cells replacing the equalities. This notion makes sense in any tricategory; however, in view of a coherence result of R. Gordon, A. J. Power and R. Street [“Coherence for tricategories”, Mem. Am. Math. Soc. 558 (1995; Zbl 0836.18001)], the author works in a Gray-category rather than a general tricategory. It is classical that a monad gives rise to a co-augmented cosimplicial object of \(\text{End}(A)\); in fact, a strict monoidal functor from the monoidal category \({\mathcal O}rd\) of finite ordinals to \(\text{End}(A)\). The author constructs a Gray-monoid \({\mathcal O}rd\)’ such that a pseudomonad amounts to a Gray-monoid morphism from \({\mathcal O}rd\)’ to \(\text{End} (A)\). Rewriting techniques are used to prove this. The paper then discusses algebras for pseudomonads and other aspects of the “formal theory of pseudomonads”. This paves the way for an alternative approach to F. Marmolejo [“Distributive laws for pseudomonads”, Theory Appl. Categ. 5, 91-147 (1999; Zbl 0919.18004)].

MSC:

18D35 Structured objects in a category (MSC2010)
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
Full Text: DOI

References:

[1] Beck, J., Distributive laws, Seminar on Triples and Categorical Homology Theory. Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics, 80 (1969), Springer-Verlag: Springer-Verlag New York/Berlin, p. 119-140 · Zbl 0186.02902
[2] Bénabou, J., Introduction to bicategories, Reports of the Midwest Category Seminar. Reports of the Midwest Category Seminar, Lecture Notes in Mathematics, 47 (1967), Springer-Verlag: Springer-Verlag New York/Berlin, p. 1-75 · Zbl 1375.18001
[3] Carmody, S. M., Cobordism Categories (1995), University of Cambridge
[4] Day, B.; Street, R. H., Monoidal bicategories and Hopf algebroids, Adv. Math., 129, 99-157 (1997) · Zbl 0910.18004
[5] Gordon, R.; Power, A. J.; Street, R. H., Coherence for tricategories, Mem. Amer. Math. Soc., 558 (1995) · Zbl 0836.18001
[6] Kelly, G. M., Basic Concepts of Enriched Category Theory. Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Ser., 64 (1982), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0478.18005
[7] Lack, S. G., The Algebra of Distributive and Extensive Categories (1995), University of Cambridge
[8] Lawvere, F. W., Ordinal sums and equational doctrines, Seminar on Triples and Categorical Homology Theory. Seminar on Triples and Categorical Homology Theory, Lecture Notes in Mathematics, 86 (1969), Springer-Verlag: Springer-Verlag New York/Berlin, p. 141-155 · Zbl 0165.03204
[9] Mac Lane, S., Natural associativity and commutativity, Rice Univ. Stud., 49, 28-46 (1963) · Zbl 0244.18008
[10] Mac Lane, S., Categories for the Working Mathematician. Categories for the Working Mathematician, Graduate Texts in Mathematics, 5 (1971), Springer-Verlag: Springer-Verlag New York · Zbl 0232.18001
[11] Marmolejo, F., Doctrines whose structure forms a fully faithful adjoint string, Theory Appl. Categ., 3, 24-44 (1997) · Zbl 0878.18004
[12] F. Marmolejo, Distributive laws for pseudomonads, unpublished manuscript, 1998.; F. Marmolejo, Distributive laws for pseudomonads, unpublished manuscript, 1998. · Zbl 0919.18004
[13] Marmolejo, F., Distributive laws for pseudomonads, Theory Appl. Categ., 5, 91-147 (1999) · Zbl 0919.18004
[14] Power, A. J., A general coherence result, J. Pure Appl. Algebra, 57, 165-173 (1989) · Zbl 0668.18010
[15] Schanuel, S.; Street, R., The free adjunction, Cahiers Topologie Géom. Différentielle, 27, 81-83 (1986) · Zbl 0592.18002
[16] Street, R. H., The formal theory of monads, J. Pure Appl. Algebra, 2, 149-168 (1972) · Zbl 0241.18003
[17] Street, R. H., Fibrations in bicategories, Cahiers Topologie Géom. Différentielle, 21, 111-160 (1980) · Zbl 0436.18005
[18] Verity, D., Enriched Categories, Internal Categories, and Change of Base (1992), University of Cambridge · Zbl 1254.18001
[19] D. Verity, Lecture to the Australian Category Seminar, September 2, 1998.; D. Verity, Lecture to the Australian Category Seminar, September 2, 1998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.