×

Symmetric weights and \(s\)-representations. (English) Zbl 0994.53025

In his classification of irreducible polar representations, J. Dadok [Trans. Am. Math. Soc. 288, 125-137 (1985; Zbl 0565.22010)] assigned to an irreducible representation of a compact Lie group \(K\) with highest weight \(\lambda \) an integer \(k(\lambda)\). This can be characterized as the smallest positive integer \(l\) such that \(w\in U^l v_\lambda\) where \(w\) and \(v_\lambda\) are vectors of smallest respectively highest weight and \(U^l\) is the \(l\)-th filtration of the enveloping algebra of the Lie algebra of \(K\). Dadok proved that \(k(\lambda)\leq 4\) resp. \(k(\lambda)\leq 2\) for polar representations of real resp. complex type.
Using results of M. Wang and W. Ziller [Symmetric spaces and strongly isotropy irreducible spaces, Math. Ann. 296, No. 2, 285-326 (1993; Zbl 0804.53075)] the authors show that a (not necessarily polar) faithful irreducible representation \(V\) of a compact connected Lie group \(K\) with symmetric highest weight \(\lambda \) is the isotropy representation of a symmetric space if \(k(\lambda)=4\) and \(V\) is of real type. If \(k(\lambda)=2\) and \(V\) is of complex type then \(V\) is the isotropy representation of a Hermitian symmetric space.
The authors give a geometric interpretation of the upper bound of \(k(\lambda)\) in terms of the osculating spaces of the orbits. They show that the values \(k(\lambda)=4\) resp. \(k(\lambda)=2\) are maximal for representations of class \({\mathcal O}_2\) (such as polar representations). Generally, an irreducible orthogonal representation \(V\) is of class \({\mathcal O}_d\) if \(V\) is spanned by the derivatives \(c^{(l)}(0)\) of order \(l\leq d\) of curves \(c\) in an orbit \(Kp\subset V\) with \(p=c(0)\neq 0\).

MSC:

53C30 Differential geometry of homogeneous manifolds
53C35 Differential geometry of symmetric spaces
Full Text: DOI

References:

[1] N. BOURBAKI, Elements de Mathematique, Groupes et Algebres de Lie, Chapitres 7 et 8, Hermann, Pans, 1975. · Zbl 0329.17002
[2] R. BOTT AND H. SAMELSON, Applications of the theory of Morse to symmetric spaces, Amer J. Math., 80 (1958), 964-1029. · Zbl 0101.39702 · doi:10.2307/2372843
[3] E. CARTAN, Sur un classe remarquable d’espaces de Riemann, Bull. Soc. Math. France, 5 (1926), 214-264; 55 (1927), 114-134. · JFM 53.0390.01
[4] L. CONLON, Vaational completeness and ^-transversal domains, J. Differential Geom., (1971), 135-147 · Zbl 0213.48602
[5] S. CONSOLE AND G. THORBERGSSON, Geometric charactezation of orthogonal representa tions, Geometry and Topology of Submanifolds VIII (F Dillen et al. eds.), World Sci., 1996, 74-84. · Zbl 0941.53034
[6] J. DADOK, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math Soc, 288 (1985), 125-137. · Zbl 0565.22010 · doi:10.2307/2000430
[7] E. B. DYNKIN, Maximal subgroups of the classical groups, (Russian) Trudy Moskov. Mat Obsc. 1 (1952), 39-166. English translation: Trasl. Amer. Math. Soc, Series 2, 6 (1957), 111-244. · Zbl 0048.01601
[8] J. -H. ESCHENBURG AND E. HEINTZE, Polar representations and symmetc spaces, J. Rem Angew. Math, 507 (1999), 93-106. · Zbl 0913.22009 · doi:10.1515/crll.1999.507.93
[9] E. HEINTZE AND W ZILLER, Isotropy irreducible spaces and s-representations, Differentia Geom. Appl, 6 (1996), 181-188. · Zbl 0845.53036 · doi:10.1016/0926-2245(96)89148-0
[10] J. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Grad. Texts i Math, 9, Springer, Berlin, 1972. · Zbl 0254.17004
[11] B. KOSTANT, On invariant skew-tensors, Proc. Natl. Acad. Sci, 42 (1956), 148-151 · Zbl 0073.17001 · doi:10.1073/pnas.42.3.148
[12] N. KUIPER, Sur les immersions a courbure totale minimale, Seminaire de Topologie et d Geomete Differentieele C. Ehresmann, Pans, 1959. · Zbl 0178.55402
[13] H. SAMELSON, Notes on Lie Algebras, Second ed, Universitext, Springer, Berlin, 1990 · Zbl 0708.17005
[14] M. WANG AND W ZILLER, On the isotropy of a symmetric space, Conference on Differentia Geometry on Homogeneous Spaces Turin, 1983, Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue, 1984, 253-261. · Zbl 0636.53058
[15] M. WANG AND W. ZILLER, On normal homogeneous Einstein manifolds, Ann. Sci. Ecol Norm. Sup. (4), 18 (1985), 563-633. · Zbl 0598.53049
[16] M. WANG AND W. ZILLER, Symmetric spaces and strongly isotropy irreducible spaces, Math Ann, 296 (1993), 285-326. · Zbl 0804.53075 · doi:10.1007/BF01445107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.