×

Infinite differentiability of Hermitian and positive \(C\)-semigroups and \(C\)-cosine functions. (English) Zbl 1010.47025

A strongly continuous family \(\{S(t);t\geq 0\}\) of bounded linear operators on a Banach space \(X\) is called a \(C\)-semigroup if it satisfies: \(S(0)=C \text{ and } S(s)S(t)=S(s+t)C \text{ for } s, t\geq 0.\) A strongly continuous family \(\{C(t);t\geq 0\}\) of bounded linear operators on \(X\) is called a \(C\)-cosine function if it satisfies: \(C(0)=C \text{ and } 2C(t)C(s) = [C(t+s) + C(|t-s |)]C \text{ for } s, t \geq 0.\) A linear operator \(T\) is said to be Hermitian or positive if it has numerical range \(V(T):=\{f(T); f\in B(X)^*, \|f\|=f(I)=1\}\) contained in the real line \(\mathbb{R}\) or in \([0,\infty)\), respectively. The following statements are proved in this paper: (1) \(C\)-semigroups of Hermitian operators are infinitely differentiable in operator norm on \((0,\infty)\), but not necessarily at \(0\); (2) \(C\)-cosine functions of Hermitian operators are norm continuous at either none or all of points in \([0,\infty)\); (3) \(C\)-semigroups of positive operators which dominate \(C\) are infinitely differentiable in operator norm on \([0,\infty)\); (4) \(C\)-cosine functions of positive operators are infinitely differentiable in operator norm on \([0,\infty)\).

MSC:

47D06 One-parameter semigroups and linear evolution equations
47D09 Operator sine and cosine functions and higher-order Cauchy problems
47D60 \(C\)-semigroups, regularized semigroups
Full Text: DOI

References:

[1] Bonsall, F. F. and Duncan, J., Numerical Ranges II, London Math. Soc. Lecture Note Ser. No. 10, Cambridge, 1973. · Zbl 0262.47001
[2] Davies, E. B. and Pang, M. M., The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc., 55 (1987), 181-208. · Zbl 0651.47026 · doi:10.1112/plms/s3-55.1.181
[3] deLaubenfels, R., C-semigroups and the Cauchy problem, /. Fund. Anal., Ill (1993), 44-61. · Zbl 0895.47029 · doi:10.1006/jfan.1993.1003
[4] Fattorini, H. O., Ordinary differential equations in linear topological spaces. I, /. Differential Equations, 5 (1968), 72-105. · Zbl 0175.15101 · doi:10.1016/0022-0396(69)90105-3
[5] Hille, E. and Phillips, R. S., Functional Analysis and Semi-groups, A MS Coll. PubL, 31 (1957). · Zbl 0078.10004
[6] Kuo, C.-C. and Shaw, S.-Y., C-cosine functions and the abstract Cauchy problem, I, /. Math. Anal Appl, 210 (1997), 632-646. · Zbl 0881.34071 · doi:10.1006/jmaa.1997.5420
[7] , C-cosine functions and the abstract Cauchy problem, II, /. Math. Anal Appl., 210 (1997), 647-666. · Zbl 0895.34050 · doi:10.1006/jmaa.1997.5421
[8] Kurepa, S., A cosine functional equation in Banach algebras, Ada Sci. Math. (Szeged), 23 (1962), 255-267. · Zbl 0113.31702
[9] Li, Y.-C. and Shaw, S.-Y., JV-times integrated C-semigroups and the abstract Cauchy problem, Taiwanese J. Math., 1 (1997), 75-102. · Zbl 0892.47042
[10] , On generators of integrated C-semigroups and C-cosine functions, Semigroup Forum, 41 (1993), 29-35. · Zbl 0804.47044 · doi:10.1007/BF02573738
[11] , Hermitian and positive C-semigroups on Banach spaces, Publ. RIMS, Kyoto Univ., 31 (1995), 625-644. · Zbl 0845.47029 · doi:10.2977/prims/1195163918
[12] , Hermitian and positive integrated C-cosine functions on Banach spaces, Positivity, 2 (1998), 281-299. · Zbl 0919.47034 · doi:10.1023/A:1009724402831
[13] Miyadera, I., On the generators of exponentially bounded C-semigroups, Proc, Japan Acad, Ser. A Math. Sci., 62 (1986), 239-242. · Zbl 0617.47032 · doi:10.3792/pjaa.62.239
[14] Shaw, S.-Y. and Li, Y.-C., On H-times integrated C-cosine functions, in Evolution Equations, Marcel Dekkar, 1995, pp. 393-406. · Zbl 0935.47032
[15] Sova, M., Cosine operator functions, Rozprawy Math., 49 (1966), 1-47. · Zbl 0156.15404
[16] Tanaka, N. and Miyadera, I., C-semigroups and the abstract Cauchy problem, /. Math. Anal. Appl., 170 (1992), 196-206. · Zbl 0812.47044 · doi:10.1016/0022-247X(92)90013-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.