×

Algebroids – general differential calculi on vector bundles. (English) Zbl 0954.17014

In this article the notion of an algebroid is introduced. It is a generalization of a Lie algebroid structure on a vector bundle. A vector bundle over a manifold together with a bracket operation, or the equivalent contravariant 2-tensor field, is called an algebroid. It is shown that many objects of the differential calculus on a manifold associated with the canonical Lie algebroid structure of the tangent bundle has an extension to the algebroid setting. A compatibility condition is studied which leads to the concept of a bialgebroid. The constructions are done with the help of Leibniz structures on manifolds. Note that certain generalizations of Lie algebroids have been around earlier (e.g. Jacobian quasi-bialgebras, Loday algebras, pre-Lie algebroids, as introduced by Kosmann-Schwarzbach, Magri, Loday, and others).

MSC:

17B66 Lie algebras of vector fields and related (super) algebras
58H05 Pseudogroups and differentiable groupoids
53D17 Poisson manifolds; Poisson groupoids and algebroids
17B63 Poisson algebras

References:

[1] Alekseev, A.; Kosman-Schwarzbach, Y., Manin pairs and moment maps (1998), Centre de Mathématique, Ecole Polytechnique, preprint No. 98-9
[2] Courant, T., Tangent Lie algebroids, J. Phys. A, 27, 4527-4536 (1994) · Zbl 0843.58044
[3] Drinfeld, V. G., Quasi-Hopf algebras, Leningrad Math. J., 1, 1419-1457 (1990) · Zbl 0718.16033
[4] Dufour, J.-P., Introduction aux tissus, (Séminaire GETODIM (1991)), 55-76 · Zbl 0769.53005
[5] Grabowski, J.; Urbański, P., Tangent lifts of Poisson and related structures, J. Phys. A, 28, 6743-6777 (1995) · Zbl 0872.58028
[6] Grabowski, J.; Urbański, P., Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom., 15, 447-486 (1997) · Zbl 0973.58006
[7] Grabowski, J.; Urbański, P., Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40, 195-208 (1997) · Zbl 1005.53061
[8] K. Koniecznma, P. Urbański, Double vector bundles and duality, dg-ga/9710014.; K. Koniecznma, P. Urbański, Double vector bundles and duality, dg-ga/9710014.
[9] Kosmann-Schwarzbach, Y., Jacobian quasi-bialgebras and quasi-Poisson Lie groups, Contemp. Math., 132, 453-489 (1992) · Zbl 0847.17020
[10] Kosmann-Schwarzbach, Y., From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46, 1243-1274 (1996) · Zbl 0858.17027
[11] Kosmann-Schwarzbach, Y.; Magri, F., Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré. Phys. Théor., 53, 35-81 (1990) · Zbl 0707.58048
[12] Libermann, P., Lie algebroids and mechanics, Archivum Mathematicum, 32, 147-162 (1996) · Zbl 0912.70009
[13] Loday, J.-L., Une version non commutative des algèbres de Lies: les algèbres de Leibniz, Ensegn. Math., 321, 269-293 (1993) · Zbl 0806.55009
[14] Mackenzie, K. C.H., Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27, 97-147 (1995) · Zbl 0829.22001
[15] Mackenzie, K. C.H.; Xu, P., Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, 415-452 (1994) · Zbl 0844.22005
[16] Mackenzie, K. C.H.; Xu, P., Classical lifting processes and multiplicative vector fields, Quarterly J. Math. Oxford, 49, 2, 59-85 (1998) · Zbl 0926.58015
[17] Pidello, G.; Tulczyjew, W., Derivations of differential forms on jet bundles, Ann. Math. Pure Appl., 147, 249-265 (1987) · Zbl 0642.58004
[18] Pradines, J., Théorie de Lie pour groupoïdes différentiables. Calcul différentiel dans la catégorie de groupoïdes, ininitésimaux, C.R. Acad. Sci. Paris Sér. A, 264, 245-248 (1967) · Zbl 0154.21704
[19] Tulczyew, W., Hamiltonian systems, Lagrangian systems, and the Legendre transformation, (Symp. Math., 14 (1974)), 101-114 · Zbl 0304.58015
[20] Urbański, P., Double vector bundles in classical mechanics, Rend. Sem. Mat. Univ. Pol. Torino, 54, 405-421 (1996) · Zbl 1037.53502
[21] Weinstein, A., Lagrangian mechanics and grupoids (1992), University of California: University of California Berkeley, preprint
[22] Yano, K.; Ishihara, S., Tangent and Cotangent Bundles (1973), Marcel Dekker: Marcel Dekker New York · Zbl 0262.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.