×

Relative category and multiplicity of positive solutions for the equation \(\Delta u+u^{2^*-1}=0\). (English) Zbl 0929.35054

Summary: Let us consider the problem \[ \begin{cases} \Delta u+ u^{2^*-1}= 0\quad & \text{in }\Omega,\\ u>0\quad & \text{in }\Omega,\\ u= 0\quad & \text{on }\partial\Omega,\end{cases}\tag{1} \] where \(\Omega\) is a smooth bounded domain of \(\mathbb{R}^n\) with \(n\geq 3\) and \(2^*= {2n\over n-2}\) (the critical Sobolev exponent).
It is well known that the existence of solutions of problem (1) is strictly related to the shape of \(\Omega\). In this paper, we show that every perturbation of a given domain, which modifies its topological properties and is obtained removing a subset of small capacity, gives rise to solutions in the perturbed domain; moreover, these solutions converge weakly to zero and concentrate near a point as the capacity of the perturbation goes to zero.
The method we use is the following: we analyze the sublevels of the corresponding functional, we relate their topological properties to the shape of the domain, and then we use the notion of relative category to evaluate the number of solutions.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35B20 Perturbations in context of PDEs
35B33 Critical exponents in context of PDEs
Full Text: DOI

References:

[1] Brezis, H., Elliptic equations with limiting Sobolev exponents – the impact of topology. In Proceedings 50th Anniv. Courant Inst, Comm. Pure Appl. Math., 39, 517-539 (1986) · Zbl 0601.35043
[2] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[3] Pohozaev, S. I., Eigenfunctions of the equation Δ \(u+ λf (u)=0\), Sov. Math. Dokl., 6, 1408-1411 (1965) · Zbl 0141.30202
[4] Kazdan, J.; Warner, F., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28, 567-597 (1975) · Zbl 0325.35038
[5] Coron, J. M., Topologie et cas limite des injections de Sobolev, C.R.A.S. Paris Ser. I,, 299, 209-212 (1984) · Zbl 0569.35032
[6] Bahri, A.; Coron, J. M., On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41, 253-294 (1988) · Zbl 0649.35033
[7] Rodriguez, A. Carpio; Comte, M.; Levandowski, R., A nonexistence result for a nonlinear equation involving critical Sobolev exponent, Ann. Inst. H. Poincaré - Anal. Non Lin., 9, 3, 243-261 (1992) · Zbl 0795.35032
[8] Dancer, E. N., A note on an equation with critical exponent, Bull. London Math. Soc., 20, 600-602 (1988) · Zbl 0646.35027
[9] Ding, W., Positive solutions of Δ \(u+u^{n+2/n−2}=0\) on contractible domains, J. Part. Diff. Equations, 2, 4, 83-88 (1989) · Zbl 0694.35067
[10] Passaseo, D., Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., 65, 147-166 (1989) · Zbl 0701.35068
[11] Passaseo, D., The effect of the domain shape on the existence of positive solutions of the equation \(Δu+u^{2^∗−1}=0\), Top. Meth. Nonlin. Anal., 3, 27-54 (1994) · Zbl 0812.35032
[12] Passaseo, D., Su alcune successioni di soluzioni positive di problemi ellittici con esponente critico, Rend. Mat. Acc. Lincei, 3, 9, 15-21 (1992)
[13] Rey, O., Sur un problème variationnel non compact: l’effect de petits trous dans le domaine, C.R. Acad. Sci. Paris Série I,, 308, 349-352 (1989) · Zbl 0686.35047
[14] Bahri, A.; Li, Y.; Rey, O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var., 3, 67-93 (1995) · Zbl 0814.35032
[15] Passaseo, D., Multiplicity of positive solutions for the equation \(Δu+λu+u^{2^∗−1}=0\) in noncontractible domains, Top. Meth. Nonlin. Anal., 2, 343-366 (1993) · Zbl 0810.35029
[16] Passaseo, D., Some sufficient conditions for the existence of positive solutions to the equation \(− Δu+a(x)u=u^{2^∗−1}\) in bounded domains, Ann. Inst. H. Poincaré - Anal. Non Lin., 13, 2, 185-227 (1996) · Zbl 0848.35046
[17] E.N. Fadell, Lectures in cohomological index theories of \(G\); E.N. Fadell, Lectures in cohomological index theories of \(G\)
[18] G. Fournier, M. Willem, Relative category and the calculus of variations, Variational Methods, Paris, 1988, pp. 95-104. Progr. Nonlinear Differential Equations Appl. 4. Birkhauser, Boston, MA, 1990.; G. Fournier, M. Willem, Relative category and the calculus of variations, Variational Methods, Paris, 1988, pp. 95-104. Progr. Nonlinear Differential Equations Appl. 4. Birkhauser, Boston, MA, 1990. · Zbl 0719.58010
[19] Szulkin, A., A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., 15, 8, 725-739 (1990) · Zbl 0719.58011
[20] M. Willem, Lectures on critical point theory, Trabalho de Mat. 199. Fundaçao Univ. Brasilia, Brasilia, 1983.; M. Willem, Lectures on critical point theory, Trabalho de Mat. 199. Fundaçao Univ. Brasilia, Brasilia, 1983.
[21] Talenti, G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110, 353-372 (1976) · Zbl 0353.46018
[22] P.L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana 1 (1985) 145-201, 45-121.; P.L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana 1 (1985) 145-201, 45-121. · Zbl 0704.49005
[23] Struwe, M., A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, 511-517 (1984) · Zbl 0535.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.