×

The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. (English) Zbl 0954.74057

The authors present a triangular shell element with constant membrane and bending strains to estimate large elasto-plastic strains encountered in thin sheet metal forming. The internal force vector and logarithmic strains through the thickness are derived, and some applications illustrate the validity of this numerical procedure.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Full Text: DOI

References:

[1] Batoz, J.L., Guo, Y.Q. and Mercier, F. (1995a), ”The inverse approach including bending effects for the analysis and design of sheet metal forming parts”, NUMIFORM 95, pp. 661-7.
[2] Batoz, J.L., Guo, Y.Q. and Mercier, F. (1995b), ”Accounting for bending effects in sheet metal forming using the inverse approach”, COMPLAS IV, Part I, pp. 707-18.
[3] Batoz, J.L., Duroux, P., Guo, Y.Q. and Detraux, J.M. (1989), ”An efficient algorithm to estimate the large strains in deep drawing”, NUMIFORM 89, pp. 383-8.
[4] Batoz, J.L., Narainen, R., Duroux, P. and Guo, Y.Q. (1993), ”Comparison of the implicit, explicit and inverse approaches for the estimation of the strain distribution in axisymmetrical thin sheets”, 4th Conf. on the Technology of Plasticity, >Beijing, pp. 1695-700.
[5] Brunet, M. and Sabourin, F. (1993), ”A simplified triangular shell element with necking criterion for 3D sheet forming analysis”, NUMISHEET 93, pp. 229-38.
[6] Brunet, M., Arrieux, R. and Nguyen Nhat, T. (1995), ”Necking prediction using forming limit stress surfaces in 3D sheet metal forming”, NUMIFORM 95, pp. 669-74.
[7] DOI: 10.1016/0020-7403(94)90033-7 · Zbl 0809.73045 · doi:10.1016/0020-7403(94)90033-7
[8] Chung, K. and Lee, D. (1992), ”Computer-aided analysis of sheet material forming processes”, Vol. 1,1st Int. Conf. on Technology of Plasticity, Tokyo, pp. 660-5.
[9] Chung, K. and Richmond, O. (1992), ”Sheet forming process design on ideal forming theory”, NUMIFORM 92, pp. 455-60.
[10] El Mouatassim, M., Thomas, B., Jameux, J.P. and Di Pasquale, E. (1995), ”An industrial finite element code for one step simulation of sheet metal forming”, NUMIFORM 95, pp. 761-6.
[11] Gerdeen, J.C. and Chen, P. (1989), ”Geometric mapping method of computer modelling of sheet metal forming”, NUMIFORM 89, pp. 437-44.
[12] DOI: 10.1002/nme.1620300804 · Zbl 0716.73087 · doi:10.1002/nme.1620300804
[13] Guo, Y.Q., Batoz, J.L., El Mouatassim, M. and Detraux, J.M. (1992b), ”On the estimation of thickness strains in thin car panels by the inverse approach”, NUMIFORM 92, pp. 1403-8.
[14] DOI: 10.1016/0924-0136(94)90120-1 · doi:10.1016/0924-0136(94)90120-1
[15] Liu, S.D. and Assempoor, A. (1995), ”Development of FAST 3D. A design-oriented one step FEM in sheet metal forming”, COMPLAS IV, Part II, pp. 1515-26.
[16] Liu, S.D. and Karima, M. (1992), ”A one step finite element approach for product design of sheet metal stampings”, NUMIFORM 92, pp. 497-502.
[17] Nie, Q.Q. and Lee, D. (1993), ”Comparison of different analytical and experimental results obtained under simple sheet metal forming processes”, Proc. 4th ICTP, Beijing, China, September, pp. 1630-4.
[18] Onate, E., Agelet de Saracibar, C. and Dalin, J.B. (1989), ”Finite element analysis of sheet metal forming problems using a selective voided viscous shell membrane formulation”, NUMIFORM 89, pp. 23-9.
[19] Peric, D., Owen, D.R.J. and Honnor, M.E. (1991), ”Simulation of thin sheet metal forming processes employing a thin shell element”, F.E. Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry, Zürich, May, pp. 569-600.
[20] Ravier, P. (1994), ”Aide à la conception des pièces par des méthodes de calcul simplifié”, in CETIM, Calculs en emboutissage, pp. 67-79.
[21] Reissner, J. (Chairman) (1991), ”FE-Simulation of 3-D sheet metal forming processes in automotive industry”, Proc. of the Int. Conf. with Workshop, Zürich, Editor, VDI Verlag.
[22] Rio, G., Tathi, B. and Horkay, F. (1993), ”Introducing bending rigidity in a finite element membrane sheet metal forming model”, in Teodosiuet al. Large Plastic Deformations, Fundamental Aspects and Applications to Metal Forming, pp. 449-56.
[23] Roelandt, J.M., Liu, X.J., Batoz, J.L. and Jameux, J.P. (1993), ”Axisymmetric and general shell elements for large transformations (formulation and applications)”, in Teodosiuet al. Large Plastic Deformations, Fundamental Aspects and Applications to Metal Forming, pp. 457-63.
[24] Sklad, M.P. (1993), ”Modelling of part shape and deformation evolution in conventional forming of large sheet metal components”, NUMISHEET 93, pp. 293-302.
[25] Sklad, M.P. and Yungblud, B.A. (1992), ”Analysis of multi-operation sheet forming processes”, NUMIFORM 92, pp. 543-7.
[26] DOI: 10.1243/03093247V172095 · doi:10.1243/03093247V172095
[27] DOI: 10.1002/nme.1620250119 · Zbl 0627.73042 · doi:10.1002/nme.1620250119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.