×

From one-dimensional to infinite-dimensional dynamical systems: Ideal turbulence. (English. Ukrainian original) Zbl 0936.37021

Ukr. Math. J. 48, No. 12, 1817-1842 (1996); translation from Ukr. Mat. Zh. 48, No. 12, 1604-1627 (1996).
Summary: There is a very short chain that joins dynamical systems with the simplest phase space (real line) and dynamical systems with the “most complicated” phase space containing random functions, as well. This statement is justified in this paper. By using “simple” examples of dynamical systems (one-dimensional and two-dimensional boundary-value problems), we consider notions that generally characterize the phenomenon of turbulence-first of all, the emergence of structures (including the cascade process of emergence of coherent structures of decreasing scales) and self-stochasticity.

MSC:

37H10 Generation, random and stochastic difference and differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
39A10 Additive difference equations
Full Text: DOI

References:

[1] E. B. Vul, Ya. G. Sinai, and K. M. Khanin, ”Feigenbaum’s universality and thermodynamical formalism,”Usp. Mat. Nauk,39, No. 3, 3–37 (1984).
[2] D. Ruelle and F. Takens, ”On the nature of turbulence,”Commun. Math. Phys.,20, 167–192 (1971). · Zbl 0223.76041 · doi:10.1007/BF01646553
[3] T. Y. Li and J. Yorke, ”Period three implies chaos,”Am. Math. Mon.,82, 985–992 (1975). · Zbl 0351.92021 · doi:10.2307/2318254
[4] M. Feigenbaum, ”Quantitative universality for a class of nonlinear transformations,”J. Statist. Phys.,19, 25–52 (1978). · Zbl 0509.58037 · doi:10.1007/BF01020332
[5] P. Collet and C. Tresser, ”Itération d’endomorphismes et groupe de renormalisation,”J. Phys. C5, 25 (1978). · Zbl 0402.54046
[6] M. Feigenbaum, ”The universal metric properties of nonlinear transformations,”J. Statist. Phys.,21, 669–706 (1979). · Zbl 0515.58028 · doi:10.1007/BF01107909
[7] M. Feigenbaum, ”Universality in the behavior of nonlinear systems,”Usp. Mat. Nauk,38, No. 2, 343–374 (1983). · doi:10.3367/UFNr.0141.198310e.0343
[8] A. N. Sharkovsky, ”How complicated can be one-dimensional dynamical systems: descriptive estimates of sets,”Dynam. Syst. Ergod. Theory,23, 447–453 (1989).
[9] A. N. Sharkovsky, ”Oscillations described by autonomous difference and difference-differential equations,” in:Proc. VIII ICNO (Prague, 1978), Academia, Prague (1979), pp. 1073–1078.
[10] A. N. Sharkovsky, ”’Dry’ turbulence,” in:Brief Communications of the International Congress of Mathematicians (Warsaw, August 16–24, 1983), X, Sect. 12, Warsaw (1983).
[11] A. N. Sharkovsky, ”Dry turbulence,” in:Plasma Theory and Nonlinear and Turbulence Processes in Physics, World Scientific (1984), pp. 1621–1626.
[12] A. N. Sharkovsky and A. G. Sivak, ”Universal ordering and universal rate of bifurcations of solutions of difference-differential equations,” in:Approximate and Qualitative Methods in the Theory of Difference-Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1983), pp. 98–105.
[13] A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko,Difference Equations and Their Applications, Kluwer, Dordrecht 1993.
[14] A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko, ”Attractors of difference equations and turbulence,” in:Plasma Theory and Nonlinear and Turbulent Processes in Physics,1, World Scientific, Singapore (1987), pp. 520–536.
[15] E. Yu. Romanenko and A. N. Sharkovsky, ”Qualitative investigation of some boundary-value problems: sophisticated oscillatory regimes,” in:Functional-Differential Equations and Their Applications to Boundary-Value Problems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 74–87.
[16] A. N. Sharkovsky and E. Yu. Romanenko, ”Problems of turbulence theory and iteration theory,” in:Proc. ECIT-91, World Scientific, Singapore (1992), pp. 241–252.
[17] A. N. Sharkovsky and E. Yu. Romanenko, ”Ideal turbulence: attractors of deterministic systems may lie in the space of random fields,”Int. J. Bifurc. Chaos,2, No. 1, 31–36 (1992). · Zbl 0899.76238 · doi:10.1142/S0218127492000045
[18] A. N. Sharkovsky and E. Yu. Romanenko, ”Self-stochasticity: attractors of deterministic problems may contain random functions,”Dopov. Akad. Nauk Ukr., No. 10, 33–37 (1992).
[19] A. N. Sharkovsky, Yu. L. Maistrenko, Ph. Deregel, and L. O. Chua, ”Dry turbulence from a time-delayed Chua’s circuit,” in:Chua’s Circuit: A Paradigm for Chaos, World Scientific, Singapore (1993), pp. 993–1041.
[20] E. Yu. Romanenko and M. B. Vereikina, ”Simulation of spatial-temporal chaos: the simplest mathematical patterns and computer graphics,”Ukr. Mat. Zh.,45, No. 10, 1398–1410 (1993). · Zbl 0823.58027 · doi:10.1007/BF01571091
[21] A. N. Sharkovsky, ”Chaos from a time-delayed Chua’s circuit,”IEEE Trans. Circuits Syst. I,40, No. 10, 781–783 (1993). · Zbl 0845.34057 · doi:10.1109/81.246152
[22] A. N. Sharkovsky, ”Ideal turbulence in an idealized time-delayed Chua’s circuit,”Int. J. Bifurc. Chaos,4, No. 2, 303–309 (1994). · Zbl 0808.94029 · doi:10.1142/S0218127494000216
[23] A. N. Sharkovsky and A. G. Sivak, ”Universal phenomena in solution bifurcation of some boundary-value problems,”J. Nonlin. Math. Phys.,1, No. 2, 147–157 (1994). · Zbl 0955.37501 · doi:10.2991/jnmp.1994.1.2.2
[24] E. Yu. Romanenko and A. N. Sharkovsky, ”Self-stochasticity in dynamical systems as a scenario for deterministic spatial-temporal chaos,”Chaos Nonlin. Mech., Ser. B,4, 172–181 (1995).
[25] E. Yu. Romanenko, ”On chaos in continuous difference equations,”World Scientific Series in Appl. Anal.,4, 617–630 (1995). · Zbl 0849.58060 · doi:10.1142/9789812795892_0054
[26] E. Yu. Romanenko, A. N. Sharkovsky, and M. B. Vereikina, ”Self-structuring and self-similarity in boundary-value problems,”Int. J. Bifurc. Chaos,5, No. 5, 1407–1418 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 145–156. · Zbl 0886.58103 · doi:10.1142/S0218127495001083
[27] A. N. Sharkovsky, Ph. Deregel, L. O. Chua, ”Dry turbulence and period-adding phenomena from a 1-D map with time delay,”Int. J. Bifurc. Chaos,5, No. 5, 1283–1302 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 21–40. · Zbl 0886.58108 · doi:10.1142/S0218127495000958
[28] A. N. Sharkovsky, ”Universal phenomena in some infinite-dimensional dynamical systems,”Int. J. Bifurc. Chaos,5, No. 5, 1419–1425 (1995); also in:Thirty Years after Sharkovskii’s Theorem: New Perspectives, World Scientific, Singapore (1995), pp. 157–164. · Zbl 0886.58099 · doi:10.1142/S0218127495001095
[29] A. Gorodetski and Yu. Hyashenko, ”Minimal and strange attractors,”Int. J. Bifurc. Chaos,6, No. 6, 1177–1183 (1996). · Zbl 0874.58032 · doi:10.1142/S0218127496000679
[30] N. S. Krylov,Justification of Statistical Physics [in Russian], Academy of Sciences of the USSR, Moscow 1950. · Zbl 0040.21503
[31] M. Born, ”Vortersagbarkeit in der klassischen Mechanik,”Z Phys.,153, 372–388 (1958). · Zbl 0098.42903 · doi:10.1007/BF01329043
[32] I. Prigogine and I. Stengers,Entre le Temps et I’éternité, Coll. Champs, Flammarion, Paris (1992).
[33] J. Graczyk and G. Swiatek,Hyperbolicity in the Real Quadratic Family, Preprint No. PM 192, PennState University (1995). · Zbl 0936.37015
[34] M. V. Jakobson, ”Absolutely continuous invariant measures for one-parameter families of one dimensional maps,”Commun. Math. Phys.,81, 39–88 (1981). · Zbl 0497.58017 · doi:10.1007/BF01941800
[35] M. Martens and T. Nowicki,Invariant Measures for Typical Quadratic Maps, Preprint No. 1996/6/ SUNY, Stony Brook (1996). · Zbl 0939.37020
[36] S. F. Kolyada and A. G. Sivak, ”Universal constants for one-parameter families of mappings,” in:Oscillations and Stability of Solutions of Difference-Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1992), pp. 53–60.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.