×

Distribution function for large velocities of a two-dimensional gas under shear flow. (English) Zbl 0939.76080

Summary: The high-velocity distribution of a two-dimensional dilute gas of Maxwell molecules under uniform shear flow is studied. First we analyze the shear-rate dependence of the eigenvalues governing the time evolution of the velocity moments derived from the Boltzmann equation. As in the three-dimensional case discussed by us previously, all the moments of degree \(k\geq 4\) diverge for shear rates larger than a critical value \(a_c^{(k)}\), which behaves for large \(k\) as \(a_c^{(k)}\sim k^{-1}\). This divergence is consistent with an algebraic tail of the form \(f(V)\sim V^{-4-\sigma(a)}\), where \(\sigma\) is a decreasing function of the shear rate. This expectation is confirmed by a Monte Carlo simulation of the Boltzmann equation far from equilibrium.

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Ikenberry, E.; Truesdell, C., On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I, J. Rat. Mech. Anal., 5, 1-54 (1956) · Zbl 0070.23504
[2] Truesdell, C., On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II, J. Rat. Mech. Anal., 5, 55-128 (1956) · Zbl 0070.23505
[3] Truesdell, C.; Muncaster, R. G., Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas (1980), New York: Academic Press, New York · Zbl 1515.80001
[4] Santos, A.; Garzó, V., Exact moment solution of the Boltzmann equation for uniform shear flow, Physica A, 213, 409-425 (1995) · doi:10.1016/0378-4371(94)00223-G
[5] Santos, A.; Garzó, V.; Brey, J. J.; Dufty, J. W., Singular behavior of shear flow far from equilibrium, Phys Rev. Lett., 71, 3971-3974 (1993) · doi:10.1103/PhysRevLett.71.3971
[6] Montanero, J. M.; Santos, A.; Garzó, V., Singular behavior of the velocity moments of a dilute gas under uniform shear flow, Phys. Rev. E, 53, 1269-1272 (1996) · doi:10.1103/PhysRevE.53.1269
[7] Bird, G. A., Molecular gas dynamics and the direct simulation of gas flows (1994), Oxford: Clarendon, Oxford
[8] Dorfman, R.; van Beijeren, H.; Berne, B. J., The kinetic-theory of gases, Statistical Mechanics. Part B: Time-dependent processes, 65-179 (1977), New York: Plenum Press, New York
[9] Ernst, M. H., Nonlinear model-Boltzmann equations and exact solutions, Phys. Rep., 78, 1-171 (1981) · doi:10.1016/0370-1573(81)90002-8
[10] McLennan, J. A., Introduction to Nonequilibrium Statistical Mechanics (1989), Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ · Zbl 0747.73002
[11] Evans, D. J.; Morriss, G. P., Statistical Mechanics of Nonequilibrium Liquids (1990), London: Academic Press, London · Zbl 1145.82301
[12] Montanero, J. M.; Santos, A., Nonequilibrium entropy of a sheared gas, Physica A, 225, 7-18 (1996) · doi:10.1016/0378-4371(95)00384-3
[13] Hendriks, E. M.; Nieuwenhuizen, T. M., Solution to the nonlinear Boltzmann equation for Maxwell models for nonisotropic initial conditions, J. Stat. Phys., 29, 591-615 (1982) · doi:10.1007/BF01342189
[14] Ordóñez, J. Gómez; Brey, J. J.; Santos, A., Shear-rate dependence of the viscosity for dilute gases, Phys. Rev. A, 39, 3038-3040 (1989) · doi:10.1103/PhysRevA.39.3038
[15] Montanero, J. M.; Santos, A.; Garzó, V., Monte Carlo simulation of the Boltzmann equation for uniform shear flow, Phys. Fluids, 8, 1981-1983 (1996) · Zbl 1027.76645 · doi:10.1063/1.868979
[16] Hanley, H. J. M., Nonlinear Fluid Behavior (1983), Amsterdam: North-Holland, Amsterdam · Zbl 0511.00036
[17] The Microscopic Approach to Complexity by Molecular Simulations, M. Mareschal and B. L. Holian, eds.,Physica A240(1-2) (1997).
[18] J. M. Montanero, V. Garzó, and A. Santos, High-velocity tail in a dilute gas under shear, inRarefied Gas Dynamics, C. Shen, ed. (Peking University Press, in press). · Zbl 1184.76374
[19] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1965), New York: Dover, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.