×

On the super-unitarity of discrete series representations of orthosymplectic Lie superalgebras. (English) Zbl 1015.17003

Summary: We investigate the notion of super-unitarity from a functional analytic point of view. For this purpose we consider examples of explicit realizations of a certain type of irreducible representations of low rank orthosymplectic Lie superalgebras which are super-unitary by construction. These are the so-called superholomorphic discrete series representations of \(\text{osp}(1/2,\mathbb{R})\) and \(\text{osp}(2/2,\mathbb{R})\) which we recently constructed using a \(\mathbb{Z}_2\)-graded extension of the orbit method [A. M. El Gradechi, Lett. Math. Phys. 35, 13-26 (1995; Zbl 0841.58030); A. M. El Gradechi and L. M. Nieto, Commun. Math. Phys. 175, 521-563 (1996; Zbl 0840.58010)]. It turns out here that super-unitarity of these representations is a consequence of the self-adjointness of two pairs of anticommuting operators which act in the Hilbert sum of two Hilbert spaces, each of which carries a holomorphic discrete series representation of su(1,1) such that the difference of the respective lowest weights is \(\frac 12\).
At an intermediate stage, we show that the generators of the considered orthosymplectic Lie superalgebras can be realized either as matrix-valued first-order differential operators or as first order differential superoperators. Even though the former realization is less convenient than the latter from the computational point of view, it has the advantage of avoiding the use of anticommuting Grassmann variables, and it is moreover important for our analysis of super-unitarity. The latter emphasizes the fundamental role played by the atypical (or degenerate) superholomorphic discrete series representations of osp(2/2,\(\mathbb{R}\)) for the super-unitarity of the other representations considered in this work, and it shows that the anticommuting (unbounded) self-adjoint operators mentioned above anticommute in a proper sense, thus connecting our work with the analysis of supersymmetric quantum mechanics.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
47B25 Linear symmetric and selfadjoint operators (unbounded)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
Full Text: DOI

References:

[1] DOI: 10.1007/BF00739152 · Zbl 0841.58030 · doi:10.1007/BF00739152
[2] DOI: 10.1007/BF02099508 · Zbl 0840.58010 · doi:10.1007/BF02099508
[3] Furutsu H., J. Math. Kyoto Univ. 28 pp 695– (1988) · Zbl 0674.17010 · doi:10.1215/kjm/1250520352
[4] DOI: 10.1016/0021-8693(91)90240-9 · Zbl 0742.17006 · doi:10.1016/0021-8693(91)90240-9
[5] DOI: 10.1016/0021-8693(90)90247-L · Zbl 0688.17002 · doi:10.1016/0021-8693(90)90247-L
[6] DOI: 10.1063/1.530242 · Zbl 0783.58007 · doi:10.1063/1.530242
[7] DOI: 10.1007/3-540-08848-2_3 · doi:10.1007/3-540-08848-2_3
[8] DOI: 10.1002/cpa.3160140303 · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[9] DOI: 10.2307/1969129 · Zbl 0045.38801 · doi:10.2307/1969129
[10] DOI: 10.1007/BF01337923 · doi:10.1007/BF01337923
[11] Dirac P. A. M., Ann. Inst. H. Poincaré 11 pp 15– (1949)
[12] Segal I. E., Illinois J. Math. 6 pp 500– (1962)
[13] Vasilescu F.-H., Rev. Roumaine Math. Pures Appl. 28 pp 77– (1983)
[14] DOI: 10.1016/0022-1236(90)90101-P · Zbl 0704.47020 · doi:10.1016/0022-1236(90)90101-P
[15] Arai A., Advanced Studies in Pure Math. 23 pp 1– (1994)
[16] DOI: 10.1007/BFb0063691 · doi:10.1007/BFb0063691
[17] DOI: 10.1090/S0002-9947-1978-0486325-5 · doi:10.1090/S0002-9947-1978-0486325-5
[18] De Bièvre S., Ann. Inst. H. Poincaré 57 pp 403– (1992)
[19] DOI: 10.1007/BF02102811 · Zbl 0741.17001 · doi:10.1007/BF02102811
[20] DOI: 10.1063/1.524895 · Zbl 0456.22013 · doi:10.1063/1.524895
[21] DOI: 10.1063/1.527614 · Zbl 0643.17012 · doi:10.1063/1.527614
[22] DOI: 10.1007/BF01609397 · Zbl 1272.53082 · doi:10.1007/BF01609397
[23] DOI: 10.1006/jfan.1995.1020 · Zbl 0834.58008 · doi:10.1006/jfan.1995.1020
[24] DOI: 10.1063/1.530672 · Zbl 0826.46068 · doi:10.1063/1.530672
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.