×

\(\mathrm{BC}_2\)-type multivariable matrix functions and matrix spherical functions. (English) Zbl 07926394

The authors study matrix spherical functions for the compact symmetric pair \((G,K)=(\mathrm{SU}(m+2), \mathrm{S}(\mathrm{U}(2)\times \mathrm{U}(m))\).
The authors show that “instead of studying the more complicated matrix spherical functions, one can study the simpler leading terms of matrix spherical functions. The leading terms turn out to be homogeneous polynomials, and homogeneity considerations allow us to prove some results, e.g. on the indecomposability of the corresponding matrix weight and the explicit derivation of the second-order matrix partial differential equation.” The leading terms are related to some hypergeometric functions. The investigation of the leading terms is done explicitly using the action of the radial part of the Casimir operator on the considered functions and their leading terms. Some new orthogonal polynomials associated with the leading terms are investigated.

MSC:

33C80 Connections of hypergeometric functions with groups and algebras, and related topics
33C52 Orthogonal polynomials and functions associated with root systems
33C47 Other special orthogonal polynomials and functions
22E30 Analysis on real and complex Lie groups
15A16 Matrix exponential and similar functions of matrices

References:

[1] G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. Zbl 0920.33001 MR 1688958 · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[2] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968. Zbl 0186.33001 MR 0240238 · Zbl 0186.33001 · doi:10.1017/s0008439500031271
[3] W. Casselman and D. Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869-930. Zbl 0524.22014 MR 0683007 · Zbl 0524.22014 · doi:10.1215/S0012-7094-82-04943-2
[4] A. Deitmar, Invariant operators on higher K-types, J. Reine Angew. Math. 412 (1990), 97-107. Zbl 0712.43006 MR 1079003 · Zbl 0712.43006 · doi:10.1515/crll.1990.412.97
[5] J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics 11, American Mathem-atical Society, Providence, RI, 1996. Zbl 0867.17001 MR 1393197 · Zbl 0867.17001 · doi:10.1090/gsm/011
[6] R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reduct-ive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 101, Springer, Berlin, 1988. Zbl 0675.43004 MR 0954385 · Zbl 0675.43004 · doi:10.1007/978-3-642-72956-0
[7] F. A. Grünbaum, I. Pacharoni, and J. Tirao, Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), 350-441. Zbl 0996.43013 MR 1883412 · Zbl 0996.43013 · doi:10.1006/jfan.2001.3840
[8] Harish-Chandra Collected papers. III. 1959-1968, (V. S. Varadarajan ed.), Springer Collec-ted Works in Mathematics Springer, Heidelberg, 2014. Zbl 1325.01031 MR 3308528
[9] G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on sym-metric spaces, Perspectives in Mathematics 16, Academic Press, San Diego, CA, 1994. Zbl 0836.43001 MR 1313912 · Zbl 0836.43001
[10] S. Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics Vol. XII, Academic Press, New York-London, 1962. Zbl 0111.18101 MR 0145455 · Zbl 0111.18101 · doi:10.1017/s0013091500026018
[11] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990. Zbl 0725.20028 MR 1066460 · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[12] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclope-dia of Mathematics and Its Applications 98, Cambridge University Press, Cambridge, 2005. Zbl 1082.42016 MR 2191786 · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[13] M. E. H. Ismail (ed.), Encyclopedia of special functions: The Askey-Bateman pro-ject, Volume 1: Univariate orthogonal polynomials, Cambridge University Press, 2020. Zbl1466.33001 MR 4421370 · Zbl 1466.33001 · doi:10.1017/9780511979156
[14] S. N. Kass, Explicit decompositions of some tensor products of modules for simple complex Lie algebras, Comm. Algebra 15 (1987), 2251-2261. Zbl 0637.17003 MR 0912771 · Zbl 0637.17003 · doi:10.1080/00927878708823536
[15] A. W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series 36, Princeton University Press, Princeton, NJ, 1986. Zbl 0604.22001 MR 0855239 · Zbl 0604.22001 · doi:10.1515/9781400883974
[16] A. W. Knapp, Lie groups beyond an introduction, 2nd edn., Progress in Mathematics 140, Birkhäuser Boston, Boston, MA, 2002. Zbl 1075.22501 MR 1920389 · Zbl 1075.22501
[17] T. Kobayashi, Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41 (2005), 497-549. Zbl 1085.22010 MR 2153533 · Zbl 1085.22010 · doi:10.2977/prims/1145475221
[18] R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomi-als and their q-analogues, Springer Monographs in Mathematics, Springer, Berlin, 2010. Zbl 1200.33012 MR 2656096 · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[19] E. Koelink, A. M. de los Ríos, and P. Román, Matrix-valued Gegenbauer-type polynomials, Constr. Approx. 46 (2017), 459-487. Zbl 1384.33025 MR 3735699 · Zbl 1384.33025 · doi:10.1007/s00365-017-9384-4
[20] E. Koelink and P. Román, Orthogonal vs. non-orthogonal reducibility of matrix-valued measures, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), article no. 008, 9 pp. Zbl 1332.33028 MR 3451358 · Zbl 1332.33028 · doi:10.3842/SIGMA.2016.008
[21] E. Koelink, M. van Pruijssen, and P. Román, Matrix-valued orthogonal polynomials related to (SU(2) × SU(2), diag), Int. Math. Res. Not. IMRN 2012 (2012), 5673-5730. Zbl 1263.33005 MR 3006173 · Zbl 1263.33005 · doi:10.1093/imrn/rnr236
[22] E. Koelink, M. van Pruijssen, and P. Román, Matrix-valued orthogonal polynomials related to (SU(2)×SU(2), diag), II, Publ. Res. Inst. Math. Sci. 49 (2013), 271-312. Zbl 1275.33016 MR 3085105 · Zbl 1275.33016 · doi:10.4171/PRIMS/106
[23] E. Koelink, M. van Pruijssen, and P. Román, Matrix elements of irreducible representations of SU(n + 1) × SU(n + 1) and multivariable matrix-valued orthogonal polynomials, J. Funct. Anal. 278 (2020), article no. 108411, 48 pp. Zbl 1435.22009 MR 4053617 · Zbl 1435.22009 · doi:10.1016/j.jfa.2019.108411
[24] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in The-ory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York-London, 1975, 435-495. Zbl 0326.33002 MR 0402146 · doi:10.1016/b978-0-12-064850-4.50015-x
[25] T. H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. IV, Indag. Math. 36 (1974), 370-381. Zbl 0291.33013 MR 0357906 · doi:10.1016/1385-7258(74)90027-4
[26] T. H. Koornwinder, Matrix elements of irreducible representations of SU(2) × SU(2) and vector-valued orthogonal polynomials, SIAM J. Math. Anal. 16 (1985), 602-613. Zbl 0581.22020 MR 0783984 · Zbl 0581.22020 · doi:10.1137/0516044
[27] T. H. Koornwinder and J. V. Stokman (eds.), Encyclopedia of special functions: The Askey-Bateman project. Vol. 2. Multivariable special functions, Cambridge University Press, Cambridge, 2021. Zbl 1484.33001 MR 4421384 · Zbl 1484.33001 · doi:10.1017/9780511777165
[28] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153. Zbl 0402.22006 MR 0528837 · Zbl 0402.22006
[29] S. Kumar, Tensor product decomposition, in Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, 1226-1261. Zbl 1236.22012 MR 2827839 · Zbl 1236.22012 · doi:10.1142/9789814324359_0094
[30] E. M. Opdam, Root systems and hypergeometric functions. III, Compositio Math. 67 (1988), 21-49. Zbl 0669.33007 MR 0949270 · Zbl 0669.33007
[31] G. Pezzini and M. van Pruijssen, On the extended weight monoid of a spherical homogeneous space and its applications to spherical functions, Represent. Theory 27 (2023), 815-886. Zbl 07752249 MR 4642865 · Zbl 1531.14066
[32] I. G. Sprinkhuizen-Kuyper, Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal. 7 (1976), 501-518. Zbl 0332.33011 MR 0415187 · Zbl 0332.33011 · doi:10.1137/0507041
[33] J. V. Stokman and N. Reshetikhin, N -point spherical functions and asymptotic boundary KZB equations, Invent. Math. 229 (2022), 1-86. Zbl 1504.22018 MR 4438352 · Zbl 1504.22018 · doi:10.1007/s00222-022-01102-3
[34] J. Tirao and I. Zurrián, Reducibility of matrix weights, Ramanujan J. 45 (2018), 349-374. Zbl 1383.42024 MR 3749746 · Zbl 1383.42024 · doi:10.1007/s11139-016-9834-9
[35] M. van Pruijssen, Multiplicity free induced representations and orthogonal polynomials, Int. Math. Res. Not. IMRN 2018 (2018), 2208-2239. Zbl 1406.33012 MR 3801483 · Zbl 1406.33012 · doi:10.1093/imrn/rnw295
[36] M. van Pruijssen, The branching rules for (SL(n + 1, C), GL(n, C)) revisited: A spherical approach and applications to orthogonal polynomials, available at https://www.math.ru.nl/ ∼ mpruijssen/ (2018).
[37] L. Vretare, Elementary spherical functions on symmetric spaces, Math. Scand. 39 (1976), 343-358. Zbl 0387.43009 MR 0447979 · Zbl 0387.43009 · doi:10.7146/math.scand.a-11667
[38] G. Warner, Harmonic analysis on semi-simple Lie groups. II , Grundlehren der Math-ematischen Wissenschaften 189, Springer, New York-Heidelberg, 1972. Zbl 0265.22021 MR 0499000 · Zbl 0265.22020 · doi:10.1007/978-3-642-51640-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.