×

Frobenius morphisms and stability conditions. (English) Zbl 07926393

Summary: We generalize Deng-Du’s folding argument, for the bounded derived category \(\mathcal{D}(Q)\) of an acyclic quiver \(Q\), to the finite-dimensional derived category \(\mathcal{D}(\Gamma Q)\) of the Ginzburg algebra \(\Gamma Q\) associated to \(Q\). We show that the \(F\)-stable category of \(\mathcal{D}(\Gamma Q)\) is equivalent to the finite-dimensional derived category \(\mathcal{D}(\Gamma \mathbb{S})\) of the Ginzburg algebra \(\Gamma \mathbb{S}\) associated to the species \(\mathbb{S}\), which is folded from \(Q\). If \((Q, \mathbb{S})\) is of Dynkin type, we prove that the space \(\mathrm{Stab}\, \mathcal{D}(S)\) of the stability conditions on \(\mathcal{D}(\mathbb{S})\) is canonically isomorphic to the space \( \mathrm{FStab}\, \mathcal{D}(Q)\) of \(F\)-stable stability conditions on \(\mathcal{D}(Q)\). For the case of Ginzburg algebras, we also prove a similar isomorphism between principal components \(\mathrm{Stab}^{\circ}\, \mathcal{D}( \Gamma \mathbb{S})\) and \(\mathrm{FStab}^{\circ}\, \mathcal{D}( \Gamma Q)\). There are two applications. One is for the space \(\mathrm{NStab}\, \mathcal{D} ( \Gamma Q)\) of numerical stability conditions in \(\mathrm{Stab}^{\circ}\, \mathcal{D}( \Gamma Q)\). We show that \(\mathrm{NStab}\, \mathcal{D}( \Gamma Q)\) consists of \(\mathrm{Br}\, Q/ \mathrm{Br}\, \mathbb{S}\) many connected components, each of which is isomorphic to \(\mathrm{Stab}^{\circ}\, \mathcal{D}( \Gamma \mathbb{S})\), for \((Q,\mathbb{S})\) is of type \((A_3,B_2)\) or \((D_4,G_2)\). The other is that we relate the \(F\)-stable stability conditions to Gepner-type stability conditions.

MSC:

16E35 Derived categories and associative algebras
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry

References:

[1] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), 317-345. Zbl 1137.18008 MR 2373143 · Zbl 1137.18008 · doi:10.4007/annals.2007.166.317
[2] B. Deng and J. Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358 (2006), 3591-3622. Zbl 1095.16007 MR 2218990 · Zbl 1095.16007 · doi:10.1090/S0002-9947-06-03812-8
[3] B. Deng and J. Du, Folding derived categories with Frobenius functors, J. Pure Appl. Algebra 208 (2007), 1023-1050. Zbl 1119.16014 MR 2283443 · Zbl 1119.16014 · doi:10.1016/j.jpaa.2006.05.001
[4] D. Happel, I. Reiten, and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+88 pp. Zbl 0849.16011 MR 1327209 · Zbl 0849.16011 · doi:10.1090/memo/0575
[5] H. Kajiura, K. Saito, and A. Takahashi, Matrix factorization and representations of quivers. II. Type ADE case, Adv. Math. 211 (2007), 327-362. Zbl 1167.16011 MR 2313537 · Zbl 1167.16011 · doi:10.1016/j.aim.2006.08.005
[6] B. Keller, Cluster algebras, quiver representations and triangulated categories, in Tri-angulated categories, London Mathematical Society Lecture Note Series 375, Cambridge University Press, Cambridge, 2010, 76-160. Zbl 1215.16012 MR 2681708 · Zbl 1215.16012 · doi:10.1017/cbo9781139107075.004
[7] B. Keller, Deformed Calabi-Yau completions, J. Reine Angew. Math. 654 (2011), 125-180. Zbl 1220.18012 MR 2795754 · Zbl 1220.18012 · doi:10.1515/CRELLE.2011.031
[8] B. Keller, Cluster algebras and derived categories, in Derived categories in algebraic geome-try, EMS Series of Congress Reports, European Mathematical Society (EMS), Zürich, 2012, 123-183. Zbl 1299.13027 MR 3050703 · Zbl 1299.13027 · doi:10.4171/115-1/6
[9] B. Keller and P. Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN (2013), 1028-1078. Zbl 1312.18007 MR 3031826 · Zbl 1312.18007 · doi:10.1093/imrn/rns009
[10] B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), 239-253. Zbl 0671.18003 MR 0976638 · Zbl 0671.18003
[11] A. King and Y. Qiu, Exchange graphs and Ext quivers, Adv. Math. 285 (2015), 1106-1154. Zbl 1405.16021 MR 3406522 · Zbl 1405.16021 · doi:10.1016/j.aim.2015.08.017
[12] S. Koenig and D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403-438. Zbl 1350.16010 MR 3178243 · Zbl 1350.16010 · doi:10.4171/dm/451
[13] E. Macrì, S. Mehrotra, and P. Stellari, Inducing stability conditions, J. Algebraic Geom. 18 (2009), 605-649. Zbl 1175.14010 MR 2524593 · Zbl 1175.14010 · doi:10.1090/S1056-3911-09-00524-4
[14] A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), 109-134, 167. Zbl 1126.14021 MR 2324559 · Zbl 1126.14021 · doi:10.17323/1609-4514-2007-7-1-109-134
[15] Y. Qiu, Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math. 269 (2015), 220-264. Zbl 1319.18004 MR 3281136 · Zbl 1319.18004 · doi:10.1016/j.aim.2014.10.014
[16] Y. Qiu, Global dimension function on stability conditions and Gepner equations, Math. Z. 303, (2023) article no. 11, 24 pp. Zbl 1505.14045 MR 4519568 · Zbl 1505.14045 · doi:10.1007/s00209-022-03170-w
[17] Y. Qiu and J. Woolf, Contractible stability spaces and faithful braid group actions, Geom. Topol. 22 (2018), 3701-3760. Zbl 1423.18044 MR 3858773 · Zbl 1423.18044 · doi:10.2140/gt.2018.22.3701
[18] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37-108. Zbl 1092.14025 MR 1831820 · Zbl 1092.14025 · doi:10.1215/S0012-7094-01-10812-0
[19] T. Sutherland, Stability conditions for Seiberg-Witten quivers, PhD thesis, University of Sheffield (United Kingdom), 2014. MR 3389457
[20] Y. Toda, Gepner type stability conditions on graded matrix factorizations, Algebr. Geom. 1 (2014), 613-665. Zbl 1322.14042 MR 3296807 · Zbl 1322.14042 · doi:10.14231/AG-2014-026
[21] Y. Toda, Gepner type stability condition via Orlov/Kuznetsov equivalence, Int. Math. Res. Not. IMRN (2016), 24-82. Zbl 1334.14011 MR 3514058 · Zbl 1334.14011 · doi:10.1093/imrn/rnv125
[22] Y. Toda, Gepner point and strong Bogomolov-Gieseker inequality for quintic 3-folds, in Higher dimensional algebraic geometry-in honour of Professor Yujiro Kawamata’s sixtieth birthday, Advanced Studies in Pure Mathematics 74, Mathematical Society of Japan (MSJ), Tokyo, 2017, 381-405. Zbl 1388.14064 MR 3791223 · Zbl 1388.14064 · doi:10.2969/aspm/07410381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.