×

Dedekind cuts, moving markers, and the uncountability of \(\mathbb{R}\). (English) Zbl 07921348

Summary: We give short proofs that \(\mathbb{R}\) is uncountable directly from the definition of \(\mathbb{R}\) as the set of Dedekind cuts of \(\mathbb{Q}\).

MSC:

03E20 Other classical set theory (including functions, relations, and set algebra)
Full Text: DOI

References:

[1] Franks, J.Cantor’s other proofs that \(\mathbb{R}\) is uncountable. Math Mag. 2010;83(4):283-289. DOI: . · Zbl 1227.97009
[2] Gray, R.Georg Cantor and transcendental numbers. Amer Math Monthly. 1994;101(9):819-832. DOI: . · Zbl 0827.01004
[3] Truss, JK.Foundations of mathematical analysis. New York: Oxford University Press; 1997. · Zbl 0872.00002
[4] Oxtoby, JC.Measure and category. 2nd ed. New York: Springer-Verlag; 1980. · Zbl 0435.28011
[5] Wenner, BR.The uncountability of the reals. Amer Math Monthly. 1969;76(6):679-680. DOI: .
[6] Petkovšek, M.Ambiguous numbers are dense. Amer Math Monthly. 1990;97(5):408-411. DOI: . · Zbl 0711.11005
[7] Starbird, M, Starbird, T.Required redundancy in the representation of reals. Proc Amer Math Soc. 2010;114(3):769-774. DOI: . · Zbl 0753.40003
[8] du Bois-Reymond, P.Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen. Math Ann. 1875;8(3):363-414. DOI: . · JFM 07.0249.01
[9] Richman, F.Is \(0.999\ldots=1\)?Math Mag.1999;72(5):396-400. DOI: . · Zbl 1007.03050
[10] Dedekind, R.Essays on the theory of numbers. Beman WW, translator. Stetigkeit und irrationale Zahlen (1888) and Was sind und was sollen die Zahlen? (1872). Chicago: Open Court Publishing Co.; 1901. · JFM 32.0185.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.