×

Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions. (English) Zbl 07912646

Summary: Functionally graded materials (FGMs) are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties. This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method. Under the assumptions of the Euler-Bernoulli beam theory, the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach. Then, the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method (TMM). Two models, i.e., a three-level FGM stepped beam and a five-level FGM stepped beam, are considered, and their natural frequencies and mode shapes are presented. To demonstrate the validity of the method in this paper, the simulation results by ABAQUS are also given. On this basis, the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out. The results show the accuracy and efficiency of the TMM.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74A40 Random materials and composite materials

Software:

ABAQUS
Full Text: DOI

References:

[1] Kieback, B.; Andneubrand, A.; Riedel, H., Processing techniques for functionally graded materials, Materials Science and Engineering A-Structural Materials: Properties, Microstructure and Processing, 362, 1-2, 81-106, 2003 · doi:10.1016/S0921-5093(03)00578-1
[2] Li, X. F., A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams, Journal of Sound and Vibration, 318, 4-5, 1210-1229, 2008 · doi:10.1016/j.jsv.2008.04.056
[3] Chakraborty, A.; Gopalakrishnan, S.; Reddy, J. N., A new beam finite element for the analysis of functionally graded materials, International Journal of Mechanical Sciences, 45, 3, 519-539, 2003 · Zbl 1035.74053 · doi:10.1016/S0020-7403(03)00058-4
[4] Alshorbagy, A. E.; Eltaher, M. A.; Mahmoud, F. F., Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling, 35, 1, 412-425, 2011 · Zbl 1202.74088 · doi:10.1016/j.apm.2010.07.006
[5] Pradhan, K. K.; Chakraverty, S., Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method, Composites Part B: Engineering, 51, 175-184, 2013 · doi:10.1016/j.compositesb.2013.02.027
[6] Su, Z.; Wang, L. F.; Sun, K. P.; Sun, J., Transverse shear and normal deformation effects on vibration behaviors of functionally graded micro-beams, Applied Mathematics and Mechanics (English Edition), 41, 9, 1303-1320, 2020 · Zbl 1457.74086 · doi:10.1007/s10483-020-2662-6
[7] Peng, W.; Chen, L. K.; He, T. H., Nonlocal thermoelastic analysis of a functionally graded material microbeam, Applied Mathematics and Mechanics (English Edition), 42, 6, 855-870, 2021 · Zbl 1479.74028 · doi:10.1007/s10483-021-2742-9
[8] Mao, X. Y.; Jing, J.; Ding, H.; Chen, L. Q., Dynamics of axially functionally graded pipes conveying fluid, Nonlinear Dynamics, 111, 1-22, 2023 · doi:10.1007/s11071-023-08470-2
[9] Yan, T.; Yang, T.; Chen, L. Q., Direct multiscale analysis of stability of an axially moving functionally graded beam with time-dependent velocity, Acta Mechanica Solida Sinica, 33, 150-163, 2020 · doi:10.1007/s10338-019-00140-4
[10] Suddoung, K.; Charoensuk, J.; Wattanasakulpong, N., Application of the differential transformation method to vibration analysis of stepped beams with elastically constrained ends, Journal of Vibration and Control, 19, 16, 2387-2400, 2013 · doi:10.1177/1077546312456581
[11] Dong, X. J.; Meng, G.; Li, H. G.; Ye, L., Vibration analysis of a stepped laminated composite Timoshenko beam, Mechanics Research Communications, 32, 5, 572-581, 2005 · Zbl 1192.74168 · doi:10.1016/j.mechrescom.2005.02.014
[12] Mao, Q.; Andpietrzko, S., Free vibration analysis of stepped beams by using Adomain decomposition method, Applied Mathematics and Computation, 217, 7, 3429-3441, 2010 · Zbl 1427.74059 · doi:10.1016/j.amc.2010.09.010
[13] Zhang, J.; Qu, D.; Fang, Z.; Shu, C., Optimization of a piezoelectric wind energy harvester with a stepped beam, Journal of Mechanical Science and Technology, 34, 4357-4366, 2020 · doi:10.1007/s12206-020-1001-y
[14] Ma, G. L.; Xu, M. L.; Chen, L. Q.; An, Z. Y., Transverse free vibration of axially moving stepped beam with different length and tip mass, Shock and Vibration, 2015, 507581, 2015 · doi:10.1155/2015/507581
[15] Cao, D. X.; Gao, Y. H., Free vibration of non-uniform axially functionally graded beams using the asymptotic development method, Applied Mathematics and Mechanics (English Edition), 40, 1, 85-96, 2019 · doi:10.1007/s10483-019-2402-9
[16] Suddoung, K.; Charoensuk, J.; Wattanasakulpong, N., Vibration response of stepped FGM beams with elastically end constraints using differential transformation method, Applied Acoustics, 77, 20-28, 2014 · doi:10.1016/j.apacoust.2013.09.018
[17] Wattanasakulpong, N.; Charoensuk, J., Vibration characteristics of stepped beams made of FGM using differential transformation method, Meccanica, 50, 1089-1101, 2015 · doi:10.1007/s11012-014-0054-3
[18] Wang, X. W.; Wang, Y. L., Free vibration analysis of multiple-stepped beams by the differential quadrature element method, Applied Mathematics and Computation, 219, 11, 5802-5810, 2013 · Zbl 1273.74135 · doi:10.1016/j.amc.2012.12.037
[19] Bambill, D. V.; Rossit, C. A.; Felix, D. H., Free vibrations of stepped axially functionally graded Timoshenko beams, Meccanica, 50, 1073-1087, 2015 · doi:10.1007/s11012-014-0053-4
[20] Su, Z.; Jin, G. Y.; Ye, T. G., Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions, Composite Structures, 186, 315-323, 2018 · doi:10.1016/j.compstruct.2017.12.018
[21] Kim, K.; Kwak, S.; Jang, P.; Juhyok, U.; Pang, K., Free vibration analysis of a multi-stepped functionally graded curved beam with general boundary conditions, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 11, 5916-5939, 2022
[22] Rui, X. T.; He, B.; Lu, Y. Q.; Lu, W. G.; Wang, G. P., Discrete time transfer matrix method for multibody system dynamics, Multibody System Dynamics, 14, 317-344, 2005 · Zbl 1146.70323 · doi:10.1007/s11044-005-5006-1
[23] Rong, B.; Rui, X. T.; Wang, G. P., Modified finite element transfer matrix method for eigenvalue problem of flexible structures, Journal of Applied Mechanics, 78, 021016, 2011 · doi:10.1115/1.4002578
[24] Su, X. Y.; Kang, H. J.; Guo, T. D.; Cong, Y. Y., Dynamic analysis of the in-plane free vibration of a multi-cable-stayed beam with transfer matrix method, Archive of Applied Mechanics, 89, 2431-2448, 2019 · doi:10.1007/s00419-019-01587-0
[25] Su, X. Y.; Kang, H. J.; Guo, T. D.; Cong, Y. Y., Modeling and parametric analysis of in-plane free vibration of a floating cable-stayed bridge with transfer matrix method, International Journal of Structural Stability and Dynamics, 20, 1, 2050004, 2020 · Zbl 1535.74295 · doi:10.1142/S0219455420500042
[26] Su, X. Y.; Kang, H. J.; Guo, T. D., A novel modeling method for in-plane eigenproblem estimation of the cable-stayed bridges, Applied Mathematical Modelling, 87, 245-268, 2020 · Zbl 1481.74466 · doi:10.1016/j.apm.2020.05.026
[27] Boiangiu, M.; Ceausu, V.; Untaroiu, C. D., A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section, Journal of Vibration and Control, 22, 11, 2591-2602, 2016 · doi:10.1177/1077546314550699
[28] Attar, M., A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions, International Journal of Mechanical Sciences, 57, 1, 19-33, 2012 · doi:10.1016/j.ijmecsci.2012.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.