×

SECRET: statistical emulation for computational reverse engineering and translation with applications in healthcare. (English) Zbl 07904357

Summary: There have been impressive advances in the physical and mathematical modelling of complex physiological systems in the last few decades, with the potential to revolutionise personalised healthcare with patient-specific evidence-based diagnosis, risk assessment and treatment decision support using digital twins. However, practical progress and genuine clinical impact hinge on successful model calibration, parameter estimation and uncertainty quantification, which calls for novel innovative adaptions and methodological extensions of contemporary state-of-the-art inference techniques from Statistics and Machine Learning. In the present study, we focus on two computational fluid-dynamics (CFD) models of the blood systemic and pulmonary circulation. We discuss state-of-the-art emulation techniques based on deep learning and Gaussian processes, which are coupled with established inference techniques based on greedy optimisation, simulated annealing, Markov Chain Monte Carlo, History Matching and rejection sampling for computationally fast inference of unknown parameters of the CFD models from blood flow and pressure data. The inference task was set as a competitive challenge which the participants had to conduct within a limited time frame representative of clinical requirements. The performance of the methods was assessed independently and objectively by the challenge organisers, based on a ground truth that was unknown to the method developers. Our results indicate that for the systemic challenge, in which an idealised case of noise-free data was considered, the relative deviation from the ground-truth in parameter space ranges from \(10^{-5}\)% (highest-performing method) to 3% (lowest-performing method). For the pulmonary challenge, for which noisy data was generated, the performance ranges from 0.9% to 7% deviation for the parameter posterior mean, and from 35% to 570% deviation for the parameter posterior variance.

MSC:

92-XX Biology and other natural sciences
76-XX Fluid mechanics

Software:

Equinox; XGBoost; VeLO; Adam
Full Text: DOI

References:

[1] Newman, M. E.J., Resource letter CS-1: Complex systems, Am. J. Phys., 79, 8, 800-810, 2011
[2] Banwarth-Kuhn, M.; Sindi, S., How and why to build a mathematical model: A case study using prion aggregation, J. Biol. Chem., 295, 2020, jbc.REV119.009851
[3] Raje, D.; Ghosh, S.; Mujumdar, P. P., Hydrologic impacts of climate change: Quantification of uncertainties, (Climate Change Modeling, Mitigation, and Adaptation, 2013), 177-218
[4] Perra, N.; Gonçalves, B., Modeling and predicting human infectious diseases, Soc. Phenomena, 23, 59-83, 2015
[5] Corti, A.; McQueen, A.; Migliavacca, F.; Chiastra, C.; McGinty, S., Investigating the effect of drug release on in-stent restenosis: A hybrid continuum – agent-based modelling approach, Comput. Methods Programs Biomed., 241, Article 107739 pp., 2023
[6] Zambrano-Martinez, J.; Calafate, C.; Soler, D.; Cano, J.-C.; Manzoni, P., Modeling and characterization of traffic flows in urban environments, Sensors, 18, 2020, 2018
[7] Gilbert, C.; Browell, J.; McMillan, D., Leveraging turbine-level data for improved probabilistic wind power forecasting, IEEE Trans. Sustain. Energy, 11, 3, 1152-1160, 2020
[8] Haleem, A.; Javaid, M.; Pratap Singh, R.; Suman, R., Exploring the revolution in healthcare systems through the applications of digital twin technology, Biomed. Technol., 4, 28-38, 2023
[9] Mohsen, F.; Al-Saadi, B.; Abdi, N.; Khan, S.; Shah, Z., Artificial intelligence-based methods for precision cardiovascular medicine, J. Personalized Med., 13, 8, 2023
[10] Qureshi, M. U.; Vaughan, G. D.A.; Sainsbury, C.; Johnson, M.; Peskin, C. S.; Olufsen, M. S.; Hill, N. A., Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation, Biomech. Model. Mechanobiol., 13, 1137-1154, 2014
[11] Lazarus, A.; Gao, H.; Luo, X.; Husmeier, D., Improving cardio-mechanic inference by combining in vivo strain data with ex vivo volume-pressure data, J. R. Stat. Soc. Ser. C. Appl. Stat., 71, 4, 906-931, 2022
[12] Paun, L. M.; Colebank, M. J.; Olufsen, M. S.; Hill, N. A.; Husmeier, D., Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation, J. R. Soc. Interface, 17, 173, Article 20200886 pp., 2020
[13] Conti, S.; O’Hagan, A., Bayesian emulation of complex multi-output and dynamic computer models, J. Statist. Plann. Inference, 140, 3, 640-651, 2010 · Zbl 1177.62033
[14] Bharucha, T.; Hlavacek, M.; Spicer, D. E.; Theocharis, P.; Anderson, R. H., How should we diagnose and differentiate hearts with double-outlet right ventricle?, Cardiol. Young, 27, 1, 1-15, 2017
[15] Taylor-LaPole, A. M.; Colebank, M. J.; Weigand, J. D.; Olufsen, M. S.; Puelz, C., A computational study of aortic reconstruction in single ventricle patients, Biomech. Model. Mechanobiol., 22, 357-377, 2023
[16] Navaratnam, D.; Fitzsimmons, S.; Grocott, M.; Rossiter, H. B.; Emmanuel, Y.; Diller, G.; Gordon-Walker, T.; Jack, S.; Sheron, N.; Pappachan, J.; Pratap, J. N.; Vettukattil, J. J.; G, V., Exercise-induced systemic venous hypertension in the fontan circulation, Am. J. Cardio., 117, 1667-1671, 2016
[17] Gordon-Walker, T. T.; Bove, K.; Veldtman, G., Fontan-associate liver disease: A review, J. Cardiol., 74, 223-232, 2019
[18] Olufsen, M. S.; Peskin, C. S.; Kim, W. Y.; Pedersen, E. M.; Nadim, A.; Larsen, J., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Ann. Biomed. Eng., 28, 1281-1299, 2000
[19] Roberts, S. J.; Osborne, M. A.; Ebden, M.; Reece, S.; Gibson, N. P.; Aigrain, S., Gaussian processes for time-series modelling, Phil. Trans. R. Soc. A, 371, 2013 · Zbl 1353.62103
[20] Gu, M.; Wang, X.; Berger, J. O., Robust Gaussian stochastic process emulation, Ann. Statist., 46, 6A, 3038-3066, 2018 · Zbl 1408.62155
[21] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, 2015
[22] Powell, M. J.D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 2, 155-162, 1964 · Zbl 0132.11702
[23] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680, 1983 · Zbl 1225.90162
[24] (Brooks, S.; Gelman, A.; Jones, G.; Meng, X.-L., Handbook of Markov Chain Monte Carlo, 2011, Chapman & Hall / CRC Press) · Zbl 1218.65001
[25] Craig, P. S.; Goldstein, M.; Seheult, A. H.; Smith, J. A., Pressure matching for hydrocarbon reservoirs: a case study in the use of Bayes linear strategies for large computer experiments, (Case Studies in Bayesian Statistics: Volume III, 1997, Springer), 37-93 · Zbl 0895.62105
[26] Moskowitz, B.; Caflisch, R., Smoothness and dimension reduction in quasi-Monte Carlo methods, Math. Comput. Modelling, 23, 8-9, 37-54, 1996 · Zbl 0858.65023
[27] Ryu, J.; Hu, X.; Shadden, S. C., A coupled lumped-parameter and distributed network model for cerebral pulse-wave hemodynamics, J. Biomech. Eng., 137, 10, Article 101009 pp., 2015
[28] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237, 1960 · Zbl 0152.44802
[29] Tabata, T.; Thomas, J. D.; Klein, A. L., Pulmonary venous flow by doppler echocardiography: revisited 12 years later, J. Am. College Cardiol., 41, 1243-1250, 2003
[30] Mynard, J. P.; Smolich, J. J., One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation, Ann. Biomed. Eng., 43, 1443-1460, 2015
[31] Qureshi, M. U.; Colebank, M. J.; Schreier, D. A.; Tabima, D. M.; Haider, M. A.; Chesler, N. C.; Olufsen, M. S., Characteristic impedance: frequency or time domain approach?, Physiol. Meas., 39, Article 014004 pp., 2018
[32] Williams, C. K.; Rasmussen, C. E., Gaussian Processes for Machine Learning, 2006, MIT press Cambridge, MA · Zbl 1177.68165
[33] Kennedy, M. C.; O’Hagan, A., Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 3, 425-464, 2001 · Zbl 1007.62021
[34] Higdon, D.; Gattiker, J.; Williams, B.; Rightley, M., Computer model calibration using high-dimensional output, J. Amer. Statist. Assoc., 103, 482, 570-583, 2008 · Zbl 1469.62414
[35] Sexton, D. M.; Murphy, J. M.; Collins, M.; Webb, M. J., Multivariate probabilistic projections using imperfect climate models part I: outline of methodology, Clim. Dyn., 38, 11-12, 2513-2542, 2011
[36] Chang, W.; Haran, M.; Applegate, P.; Pollard, D., Calibrating an ice sheet model using high-dimensional binary spatial data, J. Amer. Statist. Assoc., 111, 513, 57-72, 2016
[37] Salter, J. M.; Williamson, D. B.; Scinocca, J.; Kharin, V., Uncertainty quantification for computer models with spatial output using calibration-optimal bases, J. Amer. Statist. Assoc., 114, 528, 1800-1814, 2019, arXiv:1801.08184 · Zbl 1428.62117
[38] Coveney, S.; Corrado, C.; Oakley, J. E.; Wilkinson, R. D.; Niederer, S. A.; Clayton, R. H., Bayesian calibration of electrophysiology models using restitution curve emulators, Front. Physiol., 1120, 2021
[39] Bastos, L. S.; O’Hagan, A., Diagnostics for Gaussian process emulators, Technometrics, 51, 4, 425-438, 2009
[40] Craig, P. S.; Goldstein, M.; Seheult, A. H.; Smith, J. A., Bayes linear strategies for matching hydrocarbon reservoir history, (Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting, 1996, Oxford University Press)
[41] Tange, O., GNU Parallel 2018, 2018, Ole Tange
[42] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: KDD 2016: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785-794.
[43] Rahimi, A.; Recht, B., Random features for large-scale kernel machines, (Platt, J. C.; Koller, D.; Singer, Y.; Roweis, S., Advances in Neural Information Processing Systems 20, 2008, MIT Press: MIT Press Cambridge, MA), 1177-1184
[44] He, K.; Zhang, X.; Ren, S.; Sun, J., Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 2015
[45] Kidger, P.; Garcia, C., Equinox: neural networks in JAX via callable PyTrees and filtered transformations, 2021, Differentiable Programming workshop at Neural Information Processing Systems 2021
[46] Metz, L.; Harrison, J.; Freeman, C. D.; Merchant, A.; Beyer, L.; Bradbury, J.; Agrawal, N.; Poole, B.; Mordatch, I.; Roberts, A.; Sohl-Dickstein, J., VeLO: training versatile learned optimizers by scaling up, 2022, Preprint arXiv:2211.09760
[47] Kingma, D.; Ba, J., Adam: a method for stochastic optimization, (3rd International Conference for Learning Representations. 3rd International Conference for Learning Representations, ICLR, 2015), arXiv:1412.6980
[48] Pearson, K., On lines and planes of closest fit to systems of points in space, Lond. Edinb. Dublin Philos. Mag. J. Sci., 2, 11, 559-572, 1901 · JFM 32.0246.07
[49] Foreman-Mackey, D.; Hogg, D. W.; Lang, D.; Goodman, J., Emcee: The MCMC hammer, Publ. Astron. Soc. Pac., 125, 925, 306, 2013
[50] Gao, F.; Han, L., Implementing the Nelder-Mead simplex algorithm with adaptive parameters, Comput. Optim. Appl., 51, 259-277, 2012 · Zbl 1245.90121
[51] Haario, H.; Saksman, E.; Tamminen, J., An adaptive Metropolis algorithm, Bernoulli, 7, 2, 223-242, 2001 · Zbl 0989.65004
[52] Bowman, A. W.; Azzalini, A., Applied Smoothing Techniques for Data Analysis, 1997, Oxford University Press Inc.: Oxford University Press Inc. New York · Zbl 0889.62027
[53] Silverman, B., (Density Estimation for Statistics and Data Analysis. Density Estimation for Statistics and Data Analysis, London: Chapman & Hall/CRC, 1986, Chapman and Hall) · Zbl 0617.62042
[54] Scott, D. W.; Terrell, G. R., Biased and unbiased cross-validation in density estimation, J. Amer. Statist. Assoc., 82, 400, 1131-1146, 1987 · Zbl 0648.62037
[55] Murray, I.; MacKay, D.; Adams, R. P., The Gaussian process density sampler, (Koller, D.; Schuurmans, D.; Bengio, Y.; Bottou, L., Advances in Neural Information Processing Systems, Vol. 21, 2008, Curran Associates, Inc.)
[56] Riihimäki, J.; Vehtari, A., Laplace approximation for logistic Gaussian process density estimation and regression, Bayesian Anal., 9, 425-448, 2012 · Zbl 1327.62248
[57] Jeffreys, H., An invariant form for the prior probability in estimation problems, Proc. R. Soc. Lond. A, 186, 1007, 453-461, 1946 · Zbl 0063.03050
[58] Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.; Smola, A., A kernel two-sample test, J. Mach. Learn. Res., 13, 25, 723-773, 2012 · Zbl 1283.62095
[59] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 1, 79-86, 1951 · Zbl 0042.38403
[60] Salter, J. M.; Williamson, D., A comparison of statistical emulation methodologies for multi-wave calibration of environmental models, Environmetrics, 27, 8, 507-523, 2016 · Zbl 1525.62212
[61] L.M. Paun, M. Colebank, M. Umar Qureshi, M. Olufsen, N. Hill, D. Husmeier, MCMC with Delayed Acceptance using a Surrogate Model with an Application to Cardiovascular Fluid Dynamics, in: Proceedings of the International Conference on Statistics: Theory and Applications, ICSTA’19, 2019.
[62] Paun, L.; Husmeier, D., Emulation-accelerated Hamiltonian Monte Carlo algorithms for parameter estimation and uncertainty quantification in differential equation models, Stat. Comput., 32, 1, 2022 · Zbl 1477.62014
[63] Brynjarsdóttir, J.; O’Hagan, A., Learning about physical parameters: The importance of model discrepancy, Inverse Problems, 30, 11, Article 114007 pp., 2014 · Zbl 1307.60042
[64] D. Tran, R. Ranganath, D. Blei, The variational Gaussian process, in: 4th International Conference on Learning Representations, ICLR 2016, 2016.
[65] López-Lopera, A.; Durrande, N.; Álvarez, M., Physically-inspired Gaussian process models for post-transcriptional regulation in drosophila, IEEE/ACM Trans. Comput. Biol. Bioinform., 18, 2, 656-666, 2021
[66] Fleeter, C. M.; Geraci, G.; Schiavazzi, D. E.; Kahn, A. M.; Marsden, A. L., Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics, Comput. Methods Appl. Mech. Engrg., 365, Article 113030 pp., 2020 · Zbl 1442.76162
[67] Gramacy, R. B.; Apley, D. W., Local Gaussian process approximation for large computer experiments, J. Comput. Graph. Statist., 24, 2, 561-578, 2015
[68] Dutordoir, V.; Durrande, N.; Hensman, J., Sparse Gaussian processes with spherical harmonic features, (Iii, H. D.; Singh, A., Proceedings of the 37th International Conference on Machine Learning. Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 119, 2020, PMLR), 2793-2802
[69] Annie Sauer, A. C.; Gramacy, R. B., Vecchia-approximated deep Gaussian processes for computer experiments, J. Comput. Graph. Statist., 32, 3, 824-837, 2023 · Zbl 07792021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.