×

Global dynamics of Bazykin-type cross-diffusive model with indirect predator-taxis. (English) Zbl 07903727

Summary: This paper investigates the Bazykin-type cross-diffusive system which incorporates the prey-taxis with “volume-filling” effect and the evasive defense with signaling mechanism in two-dimensional case. To compare with the fully cross-diffusive prey-predator model, this system exhibits two new features: The prey directly move towards to the opposite concentration gradient of the chemical signal which released by the predators, on the other hand, the predator engage competition interactions. Given suitably regular initial value, it is shown that this system admits a globally bounded classical solution without any restrictiveness on the parameters of the system. The current results supplement the conditions [P. Mishra and D. Wrzosek, J. Differ. Equations 361, 391–416 (2023; Zbl 1512.35086)] which are used to prevent any blow-up of classical solution to this system. Moreover, we also prove that the prey-only steady state and coexistence steady state is globally convergent.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92C17 Cell movement (chemotaxis, etc.)

Citations:

Zbl 1512.35086
Full Text: DOI

References:

[1] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral Equ., 3, 13-75, 1990 · Zbl 0729.35062
[2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in: Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte zur Math., 133 (1993), 9-126. · Zbl 0810.35037
[3] C. Arancibia-Ibarra, P. Aguirre, J. Flores and P. Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), Paper No. 126152, 20 pp. · Zbl 1510.92151
[4] E. G. E. Avila-Vales García-Almeida Rivero-Esquivel, Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response, Discrete Cont. Dyn. Syst. Ser. B, 22, 717-740, 2017 · Zbl 1360.35015 · doi:10.3934/dcdsb.2017035
[5] A. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Austria: Laxenburg, 1976. · Zbl 0357.92024
[6] Q. Cao and J. Wu, Pattern formation of reaction-diffusion system with chemotaxis terms, Chaos, 31 (2021), Paper No. 113118, 22 pp. · Zbl 07871541
[7] M. Fuest, Global solutions near homogeneous steady states in a multidimensional population model with both predator- and prey-taxis, SIAM J. Math. Anal., 52, 5865-5891, 2020 · Zbl 1458.35222 · doi:10.1137/20M1344536
[8] M. Fuest, Global weak solutions to fully cross-diffusive systems with nonlinear diffusion and saturated taxis sensitivity, Nonlinearity, 35, 608-657, 2021 · Zbl 1481.35253 · doi:10.1088/1361-6544/ac3922
[9] K. A. M. T. Fujie Ito Winkler Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36, 151-169, 2016 · Zbl 1322.35059 · doi:10.3934/dcds.2016.36.151
[10] X. S. He Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49, 73-77, 2015 · Zbl 1381.35188 · doi:10.1016/j.aml.2015.04.017
[11] D. M. Horstmann Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107, 2005 · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[12] C. Jin, Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst., 38, 3547-3566, 2018 · Zbl 1397.92094 · doi:10.3934/dcds.2018150
[13] H.-Y. Z.-A. Jin Wang, Global stability of prey-taxis systems, J. Differ. Equ., 262, 1257-1290, 2017 · Zbl 1364.35143 · doi:10.1016/j.jde.2016.10.010
[14] H.-Y. Z.-A. L. Jin Wang Wu, Global solvability and stability of an alarm-taxis system, SIAM J. Math. Anal., 55, 2838-2876, 2023 · Zbl 1528.35014 · doi:10.1137/22M1477143
[15] P. G. Kareiva Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Amer. Nat., 130, 233-270, 1987 · doi:10.1086/284707
[16] R. Z. Kowalczyk Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343, 379-398, 2008 · Zbl 1143.35333 · doi:10.1016/j.jmaa.2008.01.005
[17] J. Y. Lankeit Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37, 6099-6121, 2017 · Zbl 1375.35575 · doi:10.3934/dcds.2017262
[18] J. LaSalle, Some extensions of Liapunov’s second method, IRE Trans. Circuit Theory, 7, 520-527, 1960
[19] J. T. M. Lee Hillen Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3, 551-573, 2009 · Zbl 1315.92064 · doi:10.1080/17513750802716112
[20] S. Li and C. Liu, Global existence and asymptotic behavior for a fully cross-diffusive predator-prey model, J. Math. Anal. Appl., 525 (2023), Paper No. 127263, 17 pp. · Zbl 1520.35015
[21] M. R. E. F. P. M. Lombardo Barresi Bilotta Gargano Pantano Sammartino, Demyelination patterns in a mathematical model of multiple sclerosis, J. Math. Biol., 75, 373-417, 2017 · Zbl 1378.92034 · doi:10.1007/s00285-016-1087-0
[22] Y. M. Lou Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differ. Equ., 40, 1905-1941, 2015 · Zbl 1332.35172 · doi:10.1080/03605302.2015.1052882
[23] Y. Mi, C. Song and Z. Wang, Boundedness and global stability of the predator-prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), Paper No. 103521, 28 pp. · Zbl 1489.92121
[24] P. D. Mishra Wrzosek, Repulsive chemotaxis and predator evasion in predator-prey models with diffusion and prey-taxis, Math. Models Methods Appl. Sci., 32, 1-42, 2022 · Zbl 1486.92175 · doi:10.1142/S0218202522500014
[25] P. D. Mishra Wrzosek, Pursuit-evasion dynamics for Bazykin-type predator-prey model with indirect predator taxis, J. Differ. Equ., 361, 391-416, 2023 · Zbl 1512.35086 · doi:10.1016/j.jde.2023.02.063
[26] M. V. Porzio Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103, 146-178, 1993 · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[27] G. B. Ren Liu, Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics, Math. Models Methods Appl. Sci., 31, 941-978, 2021 · Zbl 1512.35091 · doi:10.1142/S0218202521500238
[28] C. C. M. Stinner Surulescu Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 1969-2007, 2014 · Zbl 1301.35189 · doi:10.1137/13094058X
[29] Y. M. Tao Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252, 2520-2543, 2012 · Zbl 1268.35016 · doi:10.1016/j.jde.2011.07.010
[30] Y. Tao and M. Winkler, A fully cross-diffusive two-component evolution system, Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Fun. Anal., 281 (2021), Paper No. 109069, 51 pp. · Zbl 1471.35278
[31] Y. M. Tao Winkler, Existence theory and qualitative analysis of a fully cross-diffusive predator-prey system, SIAM J. Math. Anal., 54, 4806-4864, 2022 · Zbl 1496.35228 · doi:10.1137/21M1449841
[32] M. J. A. N. Tsyganov Brindley Holden Biktashev, Quasisoliton interaction of pursuit-evasion waves in a predator-prey system, Phy. Rev. Lett., 91, 218102, 2003 · doi:10.1103/PhysRevLett.91.218102
[33] J. Wang, Global existence and stabilization in a forager-exploiter model with general logistic sources, Nonlinear Anal., 222 (2022), Paper No. 112985, 22 pp. · Zbl 1491.35054
[34] J. M. Wang Wang, Global solution of a diffusive predator-prey model with prey-taxis, Comput. Math. Appl., 77, 2676-2694, 2019 · Zbl 1442.92142 · doi:10.1016/j.camwa.2018.12.042
[35] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905, 2010 · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[36] S. J. J. Wu Wang Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28, 2275-2312, 2018 · Zbl 1411.35171 · doi:10.1142/S0218202518400158
[37] T. Xiang, Global dynamics for a diffusive predator-prey model with preytaxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39, 278-299, 2018 · Zbl 1516.35096 · doi:10.1016/j.nonrwa.2017.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.