×

Dynamic threshold spiking neural P systems with weights and multiple channels. (English) Zbl 07898960

Summary: Membrane computing represents a sophisticated branch of computational science that assimilates the characteristics of cellular membranes and harnesses mathematical principles. It derives inspiration from the intricate structure and functional attributes exhibited by biological cell membranes. This exposition is dedicated to an in-depth exploration of spiking neural P systems (SN P systems), meticulously crafted to emulate the intricate signaling and interaction phenomena between cellular entities. Nevertheless, conventional spiking neural P systems confront inherent constraints pertaining to their excitation rules, which hinder their applicability to real-world challenges. In pursuit of overcoming these limitations, we introduce a novel paradigm encompassing the dynamic thresholds, synaptic weights, and the integration of multiple channels within synapses. This innovative framework culminates in the dynamic threshold spiking neural P systems with weights of synapses and multiple channels in synapses (DSNP-WM systems). It is noteworthy that DSNP-WM systems demonstrate Turing universality, effectively functioning as versatile entities capable of both number generation and acceptance, in addition to performing intricate computations. Importantly, these systems showcase the efficiency in tackling challenges posed by semi-uniform solutions, exemplified by the Subsets Sum problem – a fundamental member of the NP-complete problem class, which employs a nondeterministic approach.

MSC:

68Qxx Theory of computing
Full Text: DOI

References:

[1] Cabarle, F. G.C., Thinking about spiking neural P systems: some theories, tools, and research topics, J. Membr. Comput., 2024
[2] Cabarle, F. G.C.; Adorna, H. N.; Jiang, M.; Zeng, X., Spiking neural P systems with scheduled synapses, IEEE Trans. Nanobiosci., 16, 8, 792-801, 2017
[3] Cavaliere, M.; Ibarra, O. H.; Păun, Gh.; Egecioglu, O.; Ionescu, M.; Woodworth, S., Asynchronous spiking neural P systems, Theor. Comput. Sci., 410, 24-25, 2352-2364, 2009 · Zbl 1168.68014
[4] M.R. Garey, D.S. Johnson, Computers and intractability: a guide to the theory of NP-Completeness, W.H. Freeman and Company, CA, USA. · Zbl 0411.68039
[5] Ge, C.; Kasabov, N.; Liu, Z.; Yang, J., A spiking neural network model for obstacle avoidance in simulated prosthetic vision, Inf. Sci., 399, 30-42, 2017
[6] Hu, Y.; Dong, J.; Zhang, G.; Wu, Y.; Rong, H.; Zhu, M., Cancer gene selection with adaptive optimization spiking neural P systems and hybrid classifiers, J. Membr. Comput., 5, 4, 238-251, 2023
[7] Ibarra, O. H.; Păun, A.; Rodríguez-Patón, A., Sequential SNP systems based on min/max spike number, Theor. Comput. Sci., 410, 30-32, 2982-2991, 2009 · Zbl 1173.68020
[8] Ionescu, M.; Păun, Gh.; Yokomori, T., Spiking neural P systems, Fundam. Inform., 71, 2-3, 279-308, 2006 · Zbl 1110.68043
[9] Korec, I., Small universal register machines, Theor. Comput. Sci., 168, 2, 267-301, 1996 · Zbl 0874.68105
[10] Liu, L.; Jiang, K., Universality of spiking neural P systems with polarizations working in sequential mode induced by maximum spike number, J. Membr. Comput., 4, 1, 56-67, 2022 · Zbl 1518.68114
[11] Long, L.; Lugu, R.; Xiong, X.; Liu, Q.; Peng, H.; Wang, J.; Orellana-Martín, D.; Pérez-Jiménez, M. J., Echo spiking neural P systems, Knowl.-Based Syst., 253, Article 109568 pp., 2022
[12] Liu, Q.; Long, L.; Yang, Q.; Peng, H.; Wang, J.; Luo, X., LSTM-SNP: a long short-term memory model inspired from spiking neural P systems, Knowl.-Based Syst., 235, Article 107656 pp., 2022
[13] Leporati, A.; Mauri, G.; Zandron, C.; Păun, Gh.; Pérez-Jiménez, M. J., Uniform solutions to SAT and Subset Sum by spiking neural P systems, Nat. Comput., 8, 4, 681-702, 2022 · Zbl 1185.68340
[14] Li, Y.; Song, B.; Zeng, X., Rule synchronization for monodirectional tissue-like P systems with channel states, Inf. Comput., 285, Article 104895 pp., 2022 · Zbl 1504.68067
[15] Li, Y.; Song, B.; Zeng, X., Spiking neural P systems with weights and delays on synapses, Theor. Comput. Sci., 968, Article 114028 pp., 2023 · Zbl 07715632
[16] Li, Y.; Song, B.; Zeng, X., Neural-like P systems with plasmids and multiple channels, IEEE Trans. Nanobiosci., 22, 2, 420-429, 2023
[17] Lv, Z.; Yang, Q.; Peng, H.; Song, X.; Wang, J., Computational power of sequential spiking neural P systems with multiple channels, J. Membr. Comput., 3, 270-283, 2021 · Zbl 1490.68101
[18] Liu, Y.; Zhao, Y., Weighted spiking neural P systems with polarizations and anti-spikes, J. Membr. Comput., 4, 4, 269-283, 2022 · Zbl 1518.68116
[19] Ning, G.; Valencia-Cabrera, L.; Song, X., Small universal improved spiking neural P systems with multiple channels and autapses, J. Membr. Comput., 4, 2, 153-165, 2022 · Zbl 1518.68117
[20] Păun, Gh., Computing with membranes, J. Comput. Syst. Sci., 61, 1, 108-143, 2000 · Zbl 0956.68055
[21] Păun, Gh.; Rozenberg, G.; Salomaa, A., The Oxford Handbook of Membrane Computing, 2010, Oxford University. Press: Oxford University. Press New York · Zbl 1237.68001
[22] Plesa, M.; Gheoghe, M.; Ipate, F.; Zhang, G., A key agreement protocol based on spiking neural P systems with anti-spikes, J. Membr. Comput., 4, 4, 341-351, 2022 · Zbl 1518.68119
[23] Pan, L.; Păun, Gh., Spiking neural P systems with anti-spikes, Int. J. Comput. Commun. Control, 4, 3, 273-282, 2009
[24] Peng, H.; Wang, J.; Pérez-Jiménez, M. J.; Riscos-Núñez, A., Dynamic threshold neural P systems, Knowl.-Based Syst., 163, 875-884, 2019
[25] Peng, H.; Yang, J.; Wang, J.; Wang, T.; Sun, Z.; Song, X.; Luo, X.; Huang, X., Spiking neural P systems with multiple channels, Neural Netw., 95, 66-71, 2017 · Zbl 1434.68167
[26] Pan, L.; Zeng, X.; Zhang, X.; Jiang, Y., Spiking neural P systems with weighted synapses, Neural Process. Lett., 35, 13-27, 2012
[27] Rozenberg, G.; Salomaa, A., Handbook of Formal Languages, vol. 3, 1997, Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 0866.68057
[28] Song, B.; Li, K.; Orellana-Martín, D.; Pérez-Jiménez, M. J.; Pérez-Hurtado, I., A survey of nature-inspired computing: membrane computing, ACM Comput. Surv., 54, 1, 1-31, 2021
[29] Song, B.; Li, K.; Orellana-Martín, D.; Valencia-Cabrera, L.; Pérez-Jiménez, M. J., Cell-like P systems with evolutional symport/antiport rules and membrane creation, Inf. Comput., 275, Article 104542 pp., 2020 · Zbl 1496.68144
[30] Song, B.; Luo, X.; Valencia-Cabrera, L.; Zeng, X., The computational power of cell-like P systems with one protein on membrane, J. Membr. Comput., 4, 2, 332-340, 2020 · Zbl 1469.68051
[31] Song, T.; Pan, L.; Păun, Gh., Spiking neural P systems with rules on synapses, Theor. Comput. Sci., 529, 82-95, 2014 · Zbl 1358.68104
[32] Song, X.; Peng, H.; Wang, J.; Ning, G.; Sun, Z., Small universal asynchronous spiking neural P systems with multiple channels, Neurocomputing, 278, 1-8, 2020
[33] Sun, Z.; Valencia-Cabrera, L.; Ning, G.; Song, X., Spiking neural P systems without duplication, Inf. Sci., 612, 75-86, 2022 · Zbl 1536.92023
[34] Song, X.; Valencia-Cabrera, L.; Peng, H.; Wang, J.; Pérez-Jiménez, M. J., Spiking neural P systems with delay on synapses, Int. J. Neural Syst., 31, 1, Article 2050042 pp., 2021
[35] Sun, S.; Chen, W.; Wang, L.; Liu, X.; Liu, T., On the depth of deep neural networks: a theoretical view, (Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30(1), 2016), 2066-2072
[36] Song, B.; Zhang, C.; Pan, L., Tissue-like P systems with evolutional symport/antiport rules, Inf. Sci., 378, 177-193, 2017 · Zbl 1429.68074
[37] Song, B.; Zeng, X.; Rodríguez-Patón, A., Monodirectional tissue P systems with channel states, Inf. Sci., 546, 206-219, 2021 · Zbl 1475.68124
[38] Wu, T.; Păun, A.; Zhang, Z.; Pan, L., Spiking neural P systems with polarizations, IEEE Trans. Neural Netw. Learn. Syst., 29, 8, 3349-3360, 2017
[39] Wang, H.; Yang, W.; Hu, R.; Ouyang, R.; Li, K.; Li, K., A novel parallel algorithm for sparse tensor matrix chain multiplication via TCU-acceleration, IEEE Trans. Parallel Distrib. Syst., 2023
[40] Wu, T.; Zhang, L.; Lyu, Q.; Jin, Y., Asynchronous spiking neural P systems with local synchronization of rules, Inf. Sci., 588, 1-12, 2022 · Zbl 1535.68096
[41] Wu, T.; Zhang, Z.; Păun, Gh.; Pan, L., Cell-like spiking neural P systems, Theor. Comput. Sci., 623, 180-189, 2016 · Zbl 1336.68076
[42] Yin, X.; Liu, X., Dynamic threshold neural P systems with multiple channels and inhibitory rules, Processes, 10, 8, 1281-1300, 2020
[43] Yang, G.; Wang, X., Artificial neural networks for neuroscientists: a primer, Neuron, 107, 6, 1048-1070, 2022
[44] Zhao, D.; Li, Y.; Zeng, Y.; Wang, J.; Zhang, Q., Spiking capsnet: a spiking neural network with a biologically plausible routing rule between capsules, Inf. Sci., 610, 1-13, 2022
[45] Zhang, A.; Niu, Y.; Gao, Y.; Wu, J.; Gao, Z., Second-order information bottleneck based spiking neural networks for sEMG recognition, Inf. Sci., 585, 543-558, 2022 · Zbl 1532.92054
[46] Zeng, X.; Pan, L.; Pérez-Jiménez, M. J., Small universal simple spiking neural P systems with weights, Sci. China Inf. Sci., 57, 1-11, 2014 · Zbl 1423.68182
[47] Zhang, X.; Zeng, X.; Luo, B.; Pan, L., On some classes of sequential spiking neural P systems, Neural Comput., 26, 5, 974-997, 2014 · Zbl 1410.68128
[48] Zhao, S.; Zhang, L.; Liu, Z.; Peng, H.; Wang, J., ConvSNP: a deep learning model embedded with SNP-like neurons, J. Membr. Comput., 4, 1, 87-95, 2022 · Zbl 1518.68343
[49] Zeng, X.; Zhang, X.; Song, T.; Pan, L., Spiking neural P systems with thresholds, Neural Comput., 26, 7, 1340-1361, 2014 · Zbl 1415.68104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.