×

State space reconstruction of Markov chains via autocorrelation structure. (English) Zbl 07888023

Summary: Understanding the state space of observed Markov processes is essential for advancing causal inference in a wide range of scientific fields. This paper demonstrates how the previously unknown state space can be reconstructed by exploring the spectrum of the time-delay embedding matrix derived from the autocorrelation sequence of the observed series. It also highlights that the eigenvector associated with the smallest eigenvalue can provide valuable insights into the hidden data generation process itself. The presented results provide a deeper understanding of the complex dynamics of Markov chains and hold promise for enhancing various scientific applications.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
62M20 Inference from stochastic processes and prediction

References:

[1] Brenner, M.; Eldredge, J.; Freund, J., Perspective on machine learning for advancing fluid mechanics, Phys. Rev. Fluids, 10, 2019 · doi:10.1103/PhysRevFluids.4.100501
[2] Snyder, J. C.; Rupp, M.; Hansen, K.; Muller, K-R; Burke, K., Finding density functionals with machine learning, Phys. Rev. Lett., 108, 2012 · doi:10.1103/PhysRevLett.108.253002
[3] Desai, S.; Strachan, A., Parsimonious neural networks learn interpretable physical laws, Sci. Rep., 11, 2021 · doi:10.1038/s41598-021-92278-w
[4] Jakovac, A.; Kurbucz, M. T.; Pósfay, P., Reconstruction of observed mechanical motions with artificial intelligence tools, New J. Phys., 24, 2022 · doi:10.1088/1367-2630/ac7c2d
[5] Takens, F., Detecting strange attractors in turbulence, pp 366-81, 2006, Springer · Zbl 0513.58032
[6] Sugihara, G.; May, R.; Ye, H.; Hsieh, C.; Deyle, E.; Fogarty, M.; Munch, S., Detecting causality in complex ecosystems, Science, 338, 496-500, 2012 · Zbl 1355.92144 · doi:10.1126/science.1227079
[7] Stippinger, M.; Bencze, A.; Zlatniczki, Adám; Somogyvári, Z.; Telcs, A., Causal discovery of stochastic dynamical systems: a Markov chain approach, Mathematics, 11, 852, 2023 · doi:10.3390/math11040852
[8] De la Peña, L.; María Cetto, A., Stochastic theory for classical and quantum mechanical systems, Found. Phys., 5, 355-70, 1975 · doi:10.1007/BF00717450
[9] Shreve, S., Stochastic Calculus for Finance 2, Continuous-Time Models, 2004, Springer · Zbl 1068.91041
[10] Deistler, M.; Scherrer, W., Time Series Models, 2022, Springer International Publishing · Zbl 1532.62006
[11] Gatheral, J.; Jaisson, T.; Rosenbaum, M., Volatility is rough, 2014
[12] Heath, D.; Jarrow, R.; Morton, A., Bond pricing and the term structure of interest rates: a discrete time approximation, J. Financ. Quant. Anal., 25, 419-40, 1990 · doi:10.2307/2331009
[13] Hagan, P. S.; Kumar, D.; Kesniewski, A. S.; Woodward, D. E., Managing smile risk, Wilmott, 1, 84-108, 2002
[14] Stark, J., Delay embeddings for forced systems. I. Deterministic forcing, J. Nonlinear Sci., 9, 255-332, 1999 · Zbl 0985.37098 · doi:10.1007/s003329900072
[15] Stark, J.; Broomhead, D. S.; Davies, M. E.; Huke, J., Delay embeddings for forced systems. II. Stochastic forcing, J. Nonlinear Sci., 13, 519-77, 2003 · doi:10.1007/s00332-003-0534-4
[16] Kantz, H.; Ragwitz, M., Phase space reconstruction and nonlinear predictions for stationary and nonstationary markovian processes, Int. J. Bifurcation Chaos, 14, 1935-45, 2004 · Zbl 1129.62412 · doi:10.1142/S0218127404010357
[17] Kennel, M. B.; Brown, R.; Abarbanel, H. D I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45, 3403-11, 1992 · doi:10.1103/PhysRevA.45.3403
[18] Friedrich, R.; Peinke, J., Description of a turbulent cascade by a Fokker-Planck equation, Phys. Rev. Lett., 78, 863, 1997 · doi:10.1103/PhysRevLett.78.863
[19] Ragwitz, M.; Kantz, H., Markov models from data by simple nonlinear time series predictors in delay embedding spaces, Phys. Rev. E, 65, 2002 · doi:10.1103/PhysRevE.65.056201
[20] Györfi, L’o; Kohler, M.; Krzyzak, A.; Walk, H., A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics), 2002, Springer · Zbl 1021.62024
[21] Sauer, T.; Yorke, J. A.; Casdagli, M., Embedology, J. Stat. Phys., 3-4, 11, 1991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.