×

Passive and active field theories for disease spreading. (English) Zbl 07891925

Summary: The worldwide COVID-19 pandemic has led to a significant growth of interest in the development of mathematical models that allow to describe effects such as social distancing measures, the development of vaccines, and mutations. Several of these models are based on concepts from soft matter theory. Considerably less well investigated is the reverse direction, i.e. how results from epidemiological research can be of interest for the physics of colloids and polymers. In this work, we consider the susceptible-infected-recovered (SIR)-dynamical density functional theory (DDFT) model, a combination of the SIR model from epidemiology with DDFT from nonequilibrium soft matter physics, which allows for an explicit modeling of social distancing. We extend the SIR-DDFT model both from an epidemiological perspective by incorporating vaccines, asymptomaticity, reinfections, and mutations, and from a soft matter perspective by incorporating noise and self-propulsion and by deriving a phase field crystal (PFC) model that allows for a simplified description. On this basis, we investigate via computer simulations how epidemiological models are affected by the presence of non-reciprocal interactions. This is done in a numerical study of a zombie outbreak.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

MSC:

92D30 Epidemiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
82D99 Applications of statistical mechanics to specific types of physical systems

References:

[1] Wu, F., A new coronavirus associated with human respiratory disease in China, Nature, 579, 265, 2020 · doi:10.1038/s41586-020-2008-3
[2] Zhou, P., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, 270, 2020 · doi:10.1038/s41586-020-2012-7
[3] Wang, C.; Horby, P. W.; Hayden, F. G.; Gao, G. F., A novel coronavirus outbreak of global health concern, Lancet, 395, 470, 2020 · doi:10.1016/S0140-6736(20)30185-9
[4] Frazier, P. I.; Cashore, J. M.; Duan, N.; Henderson, S. G.; Janmohamed, A.; Liu, B.; Shmoys, D. B.; Wan, J.; Zhang, Y., Modeling for COVID-19 college reopening decisions: Cornell, a case study, Proc. Natl Acad. Sci. USA, 119, 2022 · doi:10.1073/pnas.2112532119
[5] Modeling COVID-19 scenarios for the United States, Nat. Med., 27, 94, 2021 · doi:10.1038/s41591-020-1132-9
[6] Estrada, E., COVID-19 and SARS-CoV-2. Modeling the present, looking at the future, Phys. Rep., 869, 1, 2020 · Zbl 1472.92136 · doi:10.1016/j.physrep.2020.07.005
[7] Nesteruk, I., Covid-19 Pandemic Dynamics: Mathematical Simulations, 2021, Springer · Zbl 1457.92002
[8] Dehning, J.; Zierenberg, J.; Spitzner, F. P.; Wibral, M.; Neto, J. P.; Wilczek, M.; Priesemann, V., Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, Science, 369, eabb9789, 2020 · doi:10.1126/science.abb9789
[9] Maier, B. F.; Brockmann, D., Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science, 368, 742, 2020 · Zbl 1478.92209 · doi:10.1126/science.abb4557
[10] te Vrugt, M.; Bickmann, J.; Wittkowski, R., Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory, Nat. Commun., 11, 5576, 2020 · doi:10.1038/s41467-020-19024-0
[11] te Vrugt, M.; Bickmann, J.; Wittkowski, R., Containing a pandemic: nonpharmaceutical interventions and the “second wave”, J. Phys. Commun., 5, 2021 · doi:10.1088/2399-6528/abf79f
[12] Giordano, G.; Colaneri, M.; Di Filippo, A.; Blanchini, F.; Bolzern, P.; De Nicolao, G.; Sacchi, P.; Colaneri, P.; Bruno, R., Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy, Nat. Med., 27, 993, 2021 · doi:10.1038/s41591-021-01334-5
[13] Grauer, J.; Löwen, H.; Liebchen, B., Strategic spatiotemporal vaccine distribution increases the survival rate in an infectious disease like Covid-19, Sci. Rep., 10, 2020 · doi:10.1038/s41598-020-78447-3
[14] Hupert, N.; Marín-Hernández, D.; Gao, B.; Águas, R.; Nixon, D. F., Heterologous vaccination interventions to reduce pandemic morbidity and mortality: modeling the US winter 2020 COVID-19 wave, Proc. Natl Acad. Sci. USA, 119, 2022 · doi:10.1073/pnas.2025448119
[15] Miller, J.; Şahin, U.; Türeci, O., The Vaccine: Inside the Race to Conquer the Covid-19 Pandemic, 2022, St Martin’s Press
[16] Quammen, D., Spillover: Animal Infections and the Next Human Pandemic, 2013, W. W. Norton & Company
[17] Dodds, W., The World’s Worst Problems, 2019, Springer
[18] Norambuena, A.; Valencia, F. J.; Guzmán-Lastra, F., Understanding contagion dynamics through microscopic processes in active Brownian particles, Sci. Rep., 10, 2020 · doi:10.1038/s41598-020-77860-y
[19] Zhao, Y.; Huepe, C.; Romanczuk, P., Contagion dynamics in self-organized systems of self-propelled agents, Sci. Rep., 12, 2588, 2022 · doi:10.1038/s41598-022-06083-0
[20] Ghosh, S.; Chakraborty, A.; Bhattacharya, S., How surface and fomite infection affect contagion dynamics: a study with self-propelled particles, Eur. Phys. J. Spec. Top., 231, 3439, 2022 · doi:10.1140/epjs/s11734-022-00431-x
[21] Forgács, P.; Libál, A.; Reichhardt, C.; Hengartner, N.; Reichhardt, C. J O., Transient pattern formation in an active matter contact poisoning model, Commun. Phys., 6, 294, 2023 · doi:10.1038/s42005-023-01387-7
[22] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115, 700, 1927 · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[23] Willem, L.; Verelst, F.; Bilcke, J.; Hens, N.; Beutels, P., Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015), BMC Infectious Dis., 17, 612, 2017 · doi:10.1186/s12879-017-2699-8
[24] te Vrugt, M.; Löwen, H.; Wittkowski, R., Classical dynamical density functional theory: from fundamentals to applications, Adv. Phys., 69, 121, 2020 · doi:10.1080/00018732.2020.1854965
[25] Durán-Olivencia, M AKalliadasis, S2021More than a year after the onset of the CoVid-19 pandemic in the UK: lessons learned from a minimalistic model capturing essential features including social awareness and policy makingmedRxiv Preprintdoi:10.1101/2021.04.15.21255510
[26] Yi, F.; Xie, Y.; Jamieson, K., The case for small-scale, mobile-enhanced COVID-19 epidemiology, 2021, IEEE · doi:10.23919/WiOpt52861.2021.9589290
[27] Jeggle, JWittkowski, R2021sir_ddft—A Rust implementation of the SIR-DDFT and SZ-DDFT model with Python and JavaScript bindingsZenododoi:10.5281/zenodo.4702572
[28] Löwen, H., Abstand halten! Physikalische Modelle aus der Theorie der weichen Materie liefern neue Einblicke in die Ausbreitung von Infektionskrankheiten, Phys. J., 20, 18, 2021
[29] Lutsko, J. F., Mechanism for the stabilization of protein clusters above the solubility curve: the role of non-ideal chemical reactions, J. Phys.: Condens. Matter, 28, 2016 · doi:10.1088/0953-8984/28/24/244020
[30] Lutsko, J. F.; Nicolis, G., Mechanism for the stabilization of protein clusters above the solubility curve, Soft Matter, 12, 93, 2016 · doi:10.1039/C5SM02234G
[31] te Vrugt, M.; Wittkowski, R., Perspective: new directions in dynamical density functionality theory, J. Phys.: Condens. Matter, 35, 2023 · doi:10.1088/1361-648X/ac8633
[32] Bley, M.; Dzubiella, J.; Moncho-Jordá, A., Active binary switching of soft colloids: stability and structural properties, Soft Matter, 17, 7682, 2021 · doi:10.1039/D1SM00670C
[33] Bley, M.; Hurtado, P. I.; Dzubiella, J.; Moncho-Jordá, A., Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions, Soft Matter, 18, 397, 2022 · doi:10.1039/D1SM01507A
[34] Moncho-Jordá, A.; Dzubiella, J., Controlling the microstructure and phase behavior of confined soft colloids by active interaction switching, Phys. Rev. Lett., 125, 2020 · doi:10.1103/PhysRevLett.125.078001
[35] Alston, H.; Parry, A. O.; Voituriez, R.; Bertrand, T., Intermittent attractive interactions lead to microphase separation in nonmotile active matter, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.034603
[36] Liu, Y., Multiscale mechanisms of reaction-diffusion process in electrode systems: a classical density functional study, Chem. Eng. Sci., 227, 2020 · doi:10.1016/j.ces.2020.115899
[37] Chen, Z.; Liu, Y.; Li, W.; Liu, H., Development of a BV-TDDFT model for metal corrosion in aqueous solution, Chem. Eng. Sci., 248, 2022 · doi:10.1016/j.ces.2021.117267
[38] Liu, Y.; Liu, H., Development of reaction-diffusion DFT and its application to catalytic oxidation of NO in porous materials, AIChE J., 66, 2020 · doi:10.1002/aic.16824
[39] Tang, W.; Yu, H.; Zhao, T.; Qing, L.; Xu, X.; Zhao, S., A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale, Chem. Eng. Sci., 236, 2021 · doi:10.1016/j.ces.2021.116513
[40] Wittmann, R.; Nguyen, G. H.; Löwen, H.; Schwarzendahl, F. J.; Sengupta, A., Collective mechano-response dynamically tunes cell-size distributions in growing bacterial colonies, Commun. Phys., 6, 331, 2022 · doi:10.1038/s42005-023-01449-w
[41] Al-Saedi, H. M.; Archer, A. J.; Ward, J., Dynamical density-functional-theory-based modeling of tissue dynamics: application to tumor growth, Phys. Rev. E, 98, 2018 · doi:10.1103/PhysRevE.98.022407
[42] Chauviere, A.; Hatzikirou, H.; Kevrekidis, I. G.; Lowengrub, J. S.; Cristini, V., Dynamic density functional theory of solid tumor growth: preliminary models, AIP Adv., 2, 2012 · doi:10.1063/1.3699065
[43] Loos, S. A M.; Klapp, S. H L.; Martynec, T., Long-range order and directional defect propagation in the nonreciprocal XY model with vision cone interactions, Phys. Rev. Lett., 130, 2023 · doi:10.1103/PhysRevLett.130.198301
[44] Kreienkamp, K. L.; Klapp, S. H L., Clustering and flocking of repulsive chiral active particles with non-reciprocal couplings, New J. Phys., 24, 2022 · doi:10.1088/1367-2630/ac9cc3
[45] Saha, S.; Agudo-Canalejo, J.; Golestanian, R., Scalar active mixtures: the nonreciprocal Cahn-Hilliard model, Phys. Rev. X, 10, 2020 · doi:10.1103/PhysRevX.10.041009
[46] Loos, S. A M.; Klapp, S. H L., Irreversibility, heat and information flows induced by non-reciprocal interactions, New J. Phys., 22, 2020 · doi:10.1088/1367-2630/abcc1e
[47] Lin, Y-F; Ivlev, A.; Löwen, H.; Hong, L.; Du, C-R, Structure and dynamics of a glass-forming binary complex plasma with non-reciprocal interaction, EPL, 123, 2018 · doi:10.1209/0295-5075/123/35001
[48] Meredith, C. H.; Moerman, P. G.; Groenewold, J.; Chiu, Y-J; Kegel, W. K.; van Blaaderen, A.; Zarzar, L. D., Predator-prey interactions between droplets driven by non-reciprocal oil exchange, Nat. Chem., 12, 1136, 2020 · doi:10.1038/s41557-020-00575-0
[49] Schwarzendahl, F. J.; Löwen, H., Barrier-mediated predator-prey dynamics, EPL, 134, 2021 · doi:10.1209/0295-5075/134/48005
[50] Ouazan-Reboul, V.; Agudo-Canalejo, J.; Golestanian, R., Self-organization of primitive metabolic cycles due to non-reciprocal interactions, Nat. Commun., 14, 4496, 2023 · doi:10.1038/s41467-023-40241-w
[51] Hamer, W. H., The Milroy lectures on epidemic disease in England – the evidence of variability and of persistence type, Lancet, 167, 569, 1906 · doi:10.1016/S0140-6736(01)80187-2
[52] McKendrick, A. G., Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44, 98, 1925 · JFM 52.0542.04 · doi:10.1017/S0013091500034428
[53] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599, 2000 · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[54] Berge, T.; Lubuma, J. M-S; Moremedi, G. M.; Morris, N.; Kondera-Shava, R., A simple mathematical model for Ebola in Africa, J. Biol. Dyn., 11, 42, 2017 · Zbl 1448.92276 · doi:10.1080/17513758.2016.1229817
[55] Noble, J. V., Geographic and temporal development of plagues, Nature, 250, 726, 1974 · doi:10.1038/250726a0
[56] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals, 2008, Princeton University Press · Zbl 1279.92038
[57] Evans, R., The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. Phys., 28, 143, 1979 · doi:10.1080/00018737900101365
[58] Munakata, T., A dynamical extension of the density functional theory, J. Phys. Soc. Japan, 58, 2434, 1989 · doi:10.1143/JPSJ.58.2434
[59] Kawasaki, K., Stochastic model of slow dynamics in supercooled liquids and dense colloidal suspensions, Physica A, 208, 35, 1994 · doi:10.1016/0378-4371(94)90533-9
[60] Marini Bettolo Marconi, U.; Tarazona, P., Dynamic density functional theory of fluids, J. Chem. Phys., 110, 8032, 1999 · doi:10.1063/1.478705
[61] Louis, A. A.; Bolhuis, P. G.; Hansen, J. P., Mean-field fluid behavior of the Gaussian core model, Phys. Rev. E, 62, 7961, 2000 · doi:10.1103/PhysRevE.62.7961
[62] Chladná, Z.; Kopfová, J.; Rachinskii, D.; Rouf, S. C., Global dynamics of SIR model with switched transmission rate, J. Math. Biol., 80, 1209, 2020 · Zbl 1440.34044 · doi:10.1007/s00285-019-01460-2
[63] Kopfová, J.; Nábělková, P.; Rachinskii, D.; Rouf, S., Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator, J. Math. Biol., 83, 11, 2021 · Zbl 1472.34092 · doi:10.1007/s00285-021-01629-8
[64] Ehrhardt, M.; Gašper, J.; Kilianová, S., SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity, J. Comput. Sci., 37, 2019 · doi:10.1016/j.jocs.2019.101027
[65] Laguzet, L.; Turinici, G., Global optimal vaccination in the SIR model: properties of the value function and application to cost-effectiveness analysis, Math. Biosci., 263, 180, 2015 · Zbl 1371.92122 · doi:10.1016/j.mbs.2015.03.002
[66] Chauhan, S.; Misra, O. P.; Dhar, J., Stability analysis of SIR model with vaccination, Am. J. Comput. Appl. Math., 4, 17, 2014 · doi:10.5923/j.ajcam.20140401.03
[67] Adekola, H. A.; Adekunle, I. A.; Egberongbe, H. O.; Onitilo, S. A.; Abdullahi, I. N., Mathematical modeling for infectious viral disease: the COVID-19 perspective, J. Public Affairs, 20, e2306, 2020 · doi:10.1002/pa.2306
[68] West, J.; Everden, S.; Nikitas, N., A case of COVID-19 reinfection in the UK, Clin. Med., 21, e52, 2021 · doi:10.7861/clinmed.2020-0912
[69] Prado-Vivar, B.; Becerra-Wong, M.; Guadalupe, J. J.; Márquez, S.; Gutierrez, B.; Rojas-Silva, P.; Grunauer, M.; Trueba, G.; Barragán, V.; Cárdenas, P., A case of SARS-CoV-2 reinfection in Ecuador, Lancet Infectious Dis., 21, e142, 2021 · doi:10.1016/S1473-3099(20)30910-5
[70] Gomes, M. G M.; White, L. J.; Medley, G. F., Infection, reinfection and vaccination under suboptimal immune protection: epidemiological perspectives, J. Theor. Biol., 228, 539, 2004 · Zbl 1439.92172 · doi:10.1016/j.jtbi.2004.02.015
[71] Stein, C., Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis, Lancet, 401, 833, 2023 · doi:10.1016/S0140-6736(22)02465-5
[72] Murchu, E. O.; Byrne, P.; Carty, P. G.; De Gascun, C.; Keogan, M.; O’Neill, M.; Harrington, P.; Ryan, M., Quantifying the risk of SARS-CoV-2 reinfection over time, Rev. Med. Virol., 32, e2260, 2022 · doi:10.1002/rmv.2260
[73] Qureshi, A. I.; Baskett, W. I.; Huang, W.; Lobanova, I.; Hasan Naqvi, S.; Shyu, C-R, Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing, Clin. Infectious Dis., 74, 294, 2022 · doi:10.1093/cid/ciab345
[74] Hu, J.; Peng, P.; Cao, X.; Wu, K.; Chen, J.; Wang, K.; Tang, N.; Huang, A-l, Increased immune escape of the new SARS-CoV-2 variant of concern Omicron, Cell. Mol. Immunol., 19, 293, 2022 · doi:10.1038/s41423-021-00836-z
[75] Schwarzendahl, F. J.; Grauer, J.; Liebchen, B.; Löwen, H., Mutation induced infection waves in diseases like COVID-19, Sci. Rep., 12, 9641, 2022 · doi:10.1038/s41598-022-13137-w
[76] Hespanha, J. P.; Chinchilla, R.; Costa, R. R.; Erdal, M. K.; Yang, G., Forecasting COVID-19 cases based on a parameter-varying stochastic SIR model, Annu. Rev. Control, 51, 460, 2021 · doi:10.1016/j.arcontrol.2021.03.008
[77] Greenwood, P. E.; Gordillo, L. F.; Chowell, G.; Hyman, J. M.; Bettencourt, L. M A.; Castillo-Chavez, C., Stochastic epidemic modeling, Mathematical and Statistical Estimation Approaches in Epidemiology, pp 31-52, 2009, Springer · Zbl 1345.92144
[78] Marini Bettolo Marconi, U.; Tarazona, P., Dynamic density functional theory of fluids, J. Phys.: Condens. Matter, 12, 413, 2000 · doi:10.1088/0953-8984/12/8A/356
[79] Dean, D. S., Langevin equation for the density of a system of interacting Langevin processes, J. Phys. A: Math. Gen., 29, L613, 1996 · Zbl 0902.60047 · doi:10.1088/0305-4470/29/24/001
[80] Archer, A. J.; Rauscher, M., Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?, J. Phys. A: Math. Gen., 37, 9325, 2004 · Zbl 1067.82049 · doi:10.1088/0305-4470/37/40/001
[81] Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter, Rev. Mod. Phys., 85, 1143, 2013 · doi:10.1103/RevModPhys.85.1143
[82] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments, Rev. Mod. Phys., 88, 2016 · doi:10.1103/RevModPhys.88.045006
[83] Voß, J.; Wittkowski, R., Hydrodynamic resistance matrices of colloidal particles with various shapes, 2018
[84] Voß, J.; Wittkowski, R., On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves, Nanoscale Adv., 2, 3890, 2020 · doi:10.1039/D0NA00099J
[85] Forgács, P.; Libál, A.; Reichhardt, C.; Hengartner, N.; Reichhardt, C. J O., Using active matter to introduce spatial heterogeneity to the susceptible infected recovered model of epidemic spreading, Sci. Rep., 12, 2022 · doi:10.1038/s41598-022-15223-5
[86] Libál, A.; Forgács, P.; Néda, A.; Reichhardt, C.; Hengartner, N.; Reichhardt, C. J O., Transition from susceptible-infected to susceptible-infected-recovered dynamics in a susceptible-cleric-zombie-recovered active matter model, Phys. Rev. E, 107, 2023 · doi:10.1103/PhysRevE.107.024604
[87] Wensink, H. H.; Löwen, H., Aggregation of self-propelled colloidal rods near confining walls, Phys. Rev. E, 78, 2008 · doi:10.1103/PhysRevE.78.031409
[88] Wittkowski, R.; Löwen, H., Dynamical density functional theory for colloidal particles with arbitrary shape, Mol. Phys., 109, 2935, 2011 · doi:10.1080/00268976.2011.609145
[89] Menzel, A. M.; Saha, A.; Hoell, C.; Löwen, H., Dynamical density functional theory for microswimmers, J. Chem. Phys., 144, 2016 · doi:10.1063/1.4939630
[90] Menzel, A. M.; Ohta, T.; Löwen, H., Active crystals and their stability, Phys. Rev. E, 89, 2014 · doi:10.1103/PhysRevE.89.022301
[91] Elder, K. R.; Katakowski, M.; Haataja, M.; Grant, M., Modeling elasticity in crystal growth, Phys. Rev. Lett., 88, 2002 · doi:10.1103/PhysRevLett.88.245701
[92] Elder, K. R.; Grant, M., Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E, 70, 2004 · doi:10.1103/PhysRevE.70.051605
[93] Berry, J.; Grant, M.; Elder, K. R., Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73, 2006 · doi:10.1103/PhysRevE.73.031609
[94] Elder, K. R.; Provatas, N.; Berry, J.; Stefanovic, P.; Grant, M., Phase-field crystal modeling and classical density functional theory of freezing, Phys. Rev. B, 75, 2007 · doi:10.1103/PhysRevB.75.064107
[95] van Teeffelen, S.; Backofen, R.; Voigt, A.; Löwen, H., Derivation of the phase-field-crystal model for colloidal solidification, Phys. Rev. E, 79, 2009 · doi:10.1103/PhysRevE.79.051404
[96] Archer, A. J.; Ratliff, D. J.; Rucklidge, A. M.; Subramanian, P., Deriving phase field crystal theory from dynamical density functional theory: consequences of the approximations, Phys. Rev. E, 100, 2019 · doi:10.1103/PhysRevE.100.022140
[97] te Vrugt, M.; Holl, M. P.; Koch, A.; Wittkowski, R.; Thiele, U., Derivation and analysis of a phase field crystal model for a mixture of active and passive particles, Model. Simul. Mater. Sci. Eng., 30, 2022 · doi:10.1088/1361-651X/ac856a
[98] Huang, Z-F; Elder, K. R.; Provatas, N., Phase-field-crystal dynamics for binary systems: derivation from dynamical density functional theory, amplitude equation formalism and applications to alloy heterostructures, Phys. Rev. E, 82, 2010 · doi:10.1103/PhysRevE.82.021605
[99] Taha, D.; Dlamini, S. R.; Mkhonta, S.; Elder, K. R.; Huang, Z-F, Phase ordering, transformation and grain growth of two-dimensional binary colloidal crystals: a phase field crystal modeling, Phys. Rev. Mater., 3, 2019 · doi:10.1103/PhysRevMaterials.3.095603
[100] Holl, M. P.; Archer, A. J.; Thiele, U., Efficient calculation of phase coexistence and phase diagrams: application to a binary phase-field crystal model, J. Phys.: Condens. Matter, 33, 2020 · doi:10.1088/1361-648X/abce6e
[101] Robbins, M. J.; Archer, A. J.; Thiele, U.; Knobloch, E., Modeling the structure of liquids and crystals using one- and two-component modified phase-field crystal models, Phys. Rev. E, 85, 2012 · doi:10.1103/PhysRevE.85.061408
[102] Alaimo, F.; Voigt, A., Microscopic field-theoretical approach for mixtures of active and passive particles, Phys. Rev. E, 98, 2018 · doi:10.1103/PhysRevE.98.032605
[103] Holl, M. P.; Archer, A. J.; Gurevich, S. V.; Knobloch, E.; Ophaus, L.; Thiele, U., Localized states in passive and active phase-field-crystal models, IMA J. Appl. Math., 86, 896, 2021 · Zbl 07452514 · doi:10.1093/imamat/hxab025
[104] Menzel, A. M.; Löwen, H., Traveling and resting crystals in active systems, Phys. Rev. Lett., 110, 2013 · doi:10.1103/PhysRevLett.110.055702
[105] te Vrugt, M.; Jeggle, J.; Wittkowski, R., Jerky active matter: a phase field crystal model with translational and orientational memory, New J. Phys., 23, 2021 · doi:10.1088/1367-2630/abfa61
[106] Ophaus, L.; Gurevich, S. V.; Thiele, U., Resting and traveling localized states in an active phase-field-crystal model, Phys. Rev. E, 98, 2018 · doi:10.1103/PhysRevE.98.022608
[107] Ophaus, L.; Kirchner, J.; Gurevich, S. V.; Thiele, U., Phase-field-crystal description of active crystallites: elastic and inelastic collisions, Chaos, 30, 2020 · doi:10.1063/5.0019426
[108] Ophaus, L.; Knobloch, E.; Gurevich, S. V.; Thiele, U., Two-dimensional localized states in an active phase-field-crystal model, Phys. Rev. E, 103, 2021 · doi:10.1103/PhysRevE.103.032601
[109] Emmerich, H.; Löwen, H.; Wittkowski, R.; Gruhn, T.; Tóth, G. I.; Tegze, G.; Gránásy, L., Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview, Adv. Phys., 61, 665, 2012 · doi:10.1080/00018732.2012.737555
[110] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 319, 1977 · doi:10.1103/PhysRevA.15.319
[111] Kaspar, C.; Ravoo, B. J.; van der Wiel, W. G.; Wegner, S. V.; Pernice, W. H P., The rise of intelligent matter, Nature, 594, 345, 2021 · doi:10.1038/s41586-021-03453-y
[112] Verran, J.; Crossley, M.; Carolan, K.; Jacobs, N.; Amos, M., Monsters, microbiology and mathematics: the epidemiology of a zombie apocalypse, J. Biol. Educ., 48, 98, 2014 · doi:10.1080/00219266.2013.849283
[113] Watson, C. H.; Harvey, K.; Field, N.; Eames, K. T D., Waking the undead: bringing zombie epidemiology to life, Lancet Infectious Dis., 14, 929, 2014 · doi:10.1016/S1473-3099(14)70934-X
[114] Verran, J.; Reyes, X. A., Emerging infectious literatures and the zombie condition, Emerg. Infectious Dis., 24, 1774, 2018 · doi:10.3201/eid2409.170658
[115] Munz, P.; Hudea, I.; Imad, J.; Smith, R. J.; J M, Tchuenche; C, Chiyaka, When zombies attack!: Mathematical modelling of an outbreak of zombie infection, Infectious Disease Modelling Research Progress, p 133, 2009, Nova Science Publishers
[116] Smith?, R., Braaaiiinnnsss!: From Academics to Zombies, 2011, University of Ottawa Press
[117] Huang, Z-F; te Vrugt, M.; Wittkowski, R.; Löwen, H., Active pattern formation emergent from single-species nonreciprocity, 2024
[118] Alemi, A. A.; Bierbaum, M.; Myers, C. R.; Sethna, J. P., You can run, you can hide: the epidemiology and statistical mechanics of zombies, Phys. Rev. E, 92, 2015 · doi:10.1103/PhysRevE.92.052801
[119] Witkowski, C.; Blais, B., Bayesian analysis of epidemics—zombies, influenza, and other diseases, 2013
[120] Wright, E.; Pegg, S., Shaun of the Dead, 2004, Big Talk Productions
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.