×

A faster direct sampling algorithm for equilateral closed polygons and the probability of knotting. (English) Zbl 07881350

The authors present a faster algorithm for direct sampling of random equilateral closed polygons in three-dimensional space. This method improves on the moment polytope sampling algorithm of J. Cantarella et al. [J. Phys. A, Math. Theor. 49, No. 27, Article ID 275202, 9 p. (2016; Zbl 1342.82063)] which achieved a runtime of \(\Theta (n^{5/2})\) per sample, where \(n\) is the number of edges in the random equilateral closed polygon. The improved algorithm presented here improves the runtime to \(\Theta (n^{2})\) per sample, The authors use the new sampling method to investigate the probability of finding unknots among equilateral closed polygons cover covering a polygonal length from \(n = 16\) to \(n = 3043\). The authors detect the unknot by computing invariants based on the Alexander polynomial.

MSC:

57K10 Knot theory
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82D60 Statistical mechanics of polymers
60G50 Sums of independent random variables; random walks

Citations:

Zbl 1342.82063

Software:

OEIS; AMD; GitHub

References:

[1] Adams, C. C., The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, 2004, American Mathematical Society · Zbl 1065.57003
[2] Alvarado, S.; Calvo, J. A.; Millett, K. C., The generation of random equilateral polygons, J. Stat. Phys., 143, 102-38, 2011 · Zbl 1222.82069 · doi:10.1007/s10955-011-0164-4
[3] Amestoy, P. R.; Davis, T. A.; Duff, I. S., An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl., 17, 886-905, 1996 · Zbl 0861.65021 · doi:10.1137/S0895479894278952
[4] Amestoy, P. R.; Davis, T. A.; Duff, I. S., Algorithm 837: AMD, an approximate minimum degree ordering algorithm, ACM Trans. Math. Softw., 30, 381-8, 2004 · Zbl 1070.65534 · doi:10.1145/1024074.1024081
[5] Ashton, TCantarella, JChapman, HEddy, T2001-2024plCurve: fast polygon libraryplCurve is Distributed via Homebrew for macOS Systems(available at: https://github.com/designbynumbers/plcurve)
[6] Bennett, B. M., On the use of the negative binomial in epidemiology, Biometrical J., 23, 69-72, 1981 · doi:10.1002/bimj.4710230109
[7] Borwein, D.; Borwein, J. M.; Mares, B. A Jr, Multi-variable sinc integrals and volumes of polyhedra, Ramanujan J., 6, 189-208, 2002 · Zbl 1012.42005 · doi:10.1023/A:1015727317007
[8] Cantarella, J.; Duplantier, B.; Shonkwiler, C.; Uehara, E., A fast direct sampling algorithm for equilateral closed polygons, J. Phys. A: Math. Theor., 49, 2016 · Zbl 1342.82063 · doi:10.1088/1751-8113/49/27/275202
[9] Cantarella, J.; Shonkwiler, C., The symplectic geometry of closed equilateral random walks in 3-space, Ann. Appl. Probab., 26, 549-96, 2016 · Zbl 1408.53109 · doi:10.1214/15-AAP1100
[10] Culler, MDunfield, N MGoerner, MWeeks, J R2024SnapPy, a computer program for studying the geometry and topology of 3-manifolds(available at: http://snappy.computop.org)
[11] Deguchi, T.; Tsurusaki, K., A statistical study of random knotting using the Vassiliev invariants, J. Knot. Theor. Ramif., 03, 321-53, 1994 · Zbl 0841.57010 · doi:10.1142/S0218216594000241
[12] Deguchi, T.; Uehara, E.; Flapan, E.; Wong, H., Topological sum rules in the knotting probabilities of DNA, Topology and Geometry of Biopolymers (Contemporary Mathematics vol 746), pp 57-83, 2020, American Mathematical Society · Zbl 1444.57002
[13] des Cloizeaux, J.; Mehta, M. L., Topological constraints on polymer rings and critical indices, J. Physique, 40, 665-70, 1979 · doi:10.1051/jphys:01979004007066500
[14] Diao, Y., The knotting of equilateral polygons in \(\mathbb{R}^3\), J. Knot. Theor. Ramif., 4, 189-96, 1995 · Zbl 0846.57004 · doi:10.1142/S0218216595000090
[15] Diao, Y.; Dobay, A.; Kusner, R. B.; Millett, K. C.; Stasiak, A., The average crossing number of equilateral random polygons, J. Phys. A: Math. Gen., 36, 11561-74, 2003 · Zbl 1052.57006 · doi:10.1088/0305-4470/36/46/002
[16] Diao, Y.; Ernst, C.; Montemayor, A.; Ziegler, U., Generating equilateral random polygons in confinement, J. Phys. A: Math. Theor., 44, 2011 · Zbl 1229.57004 · doi:10.1088/1751-8113/44/40/405202
[17] Diao, Y.; Ernst, C.; Montemayor, A.; Ziegler, U., Generating equilateral random polygons in confinement II, J. Phys. A: Math. Theor., 45, 2012 · Zbl 1320.60033 · doi:10.1088/1751-8113/45/27/275203
[18] Diao, Y.; Ernst, C.; Montemayor, A.; Ziegler, U., Generating equilateral random polygons in confinement III, J. Phys. A: Math. Theor., 45, 2012 · Zbl 1320.60034 · doi:10.1088/1751-8113/45/46/465003
[19] Duistermaat, J. J.; Heckman, G. J., On the variation in the cohomology of the symplectic form of the reduced phase space, Inventiones Math., 69, 259-68, 1982 · Zbl 0503.58015 · doi:10.1007/BF01399506
[20] Durrett, R., Probability: Theory and Examples (Cambridge Series in Statistical and Probabilistic Mathematics vol 49), 2019, Cambridge University Press · Zbl 1440.60001
[21] Hausmann, J-C; Knutson, A., The cohomology ring of polygon spaces, Ann. Inst. Fourier, 48, 281-321, 1998 · Zbl 0903.14019 · doi:10.5802/aif.1619
[22] Klenin, K. V.; Vologodskii, A. V.; Anshelevich, V. V.; Dykhne, A. M.; Frank-Kamenetskii, M. D., Effect of excluded volume on topological properties of circular DNA, J. Biomol. Struct. Dyn., 5, 1173-85, 1988 · doi:10.1080/07391102.1988.10506462
[23] Laplace, P-S, Théorie Analytique des Probabilités, 1820, Madame Veuve Courcier
[24] Lui, K-J, Statistical Estimation of Epidemiological Risk (Statistics in Practice), 2004, Wiley
[25] Medhurst, R. G.; Roberts, J. H., Evaluation of the integral \(I_n(b)=\frac{2}{\text{\pi}}\int_0^{\operatorname{\infty}} ( \frac{ \sin x}{x} )^n\cos(bx)\operatorname{d}x\), Math. Comput., 19, 113-7, 1965 · Zbl 0147.14601 · doi:10.1090/S0025-5718-1965-0172446-8
[26] Michels, J. P J.; Wiegel, F. W., Probability of knots in a polymer ring, Phys. Lett. A, 90, 381-4, 1982 · doi:10.1016/0375-9601(82)90636-3
[27] Millett, K. C., Knotting of regular polygons in 3-space, J. Knot. Theor. Ramif., 3, 263-78, 1994 · Zbl 0838.57008 · doi:10.1142/S0218216594000204
[28] Millett, K. C.; Rawdon, E. J.; Calvo, J. A.; Millett, K. C.; Rawdon, E. J.; Stasiak, A., Universal characteristics of polygonal knot probabilities, Physical and Numerical Models in Knot Theory: Including Applications to the Life Sciences (Series on Knots and Everything vol 36), pp 247-74, 2005, World Scientific Publishing · Zbl 1101.82010
[29] Moore, N. T.; Grosberg, A. Y., Limits of analogy between self-avoidance and topology-driven swelling of polymer loops, Phys. Rev. E, 72, 2005 · doi:10.1103/PhysRevE.72.061803
[30] Moore, N. T.; Lua, R. C.; Grosberg, A. Y., Topologically driven swelling of a polymer loop, Proc. Natl Acad. Sci., 101, 13431-5, 2004 · doi:10.1073/pnas.0403383101
[31] OEIS Foundation Inc.2024The on-line encyclopedia of integer sequences(available at: https://oeis.org)
[32] Orlandini, E.; Tesi, M. C.; Janse van Rensburg, E. J.; Whittington, S. G., Asymptotics of knotted lattice polygons, J. Phys. A: Math. Gen., 31, 5953-67, 1999 · Zbl 0953.82031 · doi:10.1088/0305-4470/31/28/010
[33] Orlandini, E.; Whittington, S. G., Statistical topology of closed curves: Some applications in polymer physics, Rev. Mod. Phys., 79, 611-42, 2007 · Zbl 1205.82153 · doi:10.1103/RevModPhys.79.611
[34] Pólya, G., Berechnung eines bestimmten Integrals, Math. Ann., 74, 204-12, 1913 · JFM 44.0357.02 · doi:10.1007/BF01456040
[35] Schumacher, H2023Tensors(available at: https://github.com/HenrikSchumacher/Tensors)
[36] Varela, R.; Hinson, K.; Arsuaga, J.; Diao, Y., A fast ergodic algorithm for generating ensembles of equilateral random polygons, J. Phys. A: Math. Theor., 42, 2009 · Zbl 1158.92019 · doi:10.1088/1751-8113/42/9/095204
[37] Vologodskii, A. V.; Anshelevich, V. V.; Lukashin, A. V.; Frank-Kamenetskii, M. D., Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix, Nature, 280, 294-8, 1979 · doi:10.1038/280294a0
[38] Xiong, A.; Taylor, A. J.; Dennis, M. R.; Whittington, S. G., Knot probabilities in equilateral random polygons, J. Phys. A: Math. Theor., 54, 2021 · Zbl 1519.57013 · doi:10.1088/1751-8121/ac1fc2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.