×

Fully discrete approximations and an a priori error analysis of a two-temperature thermo-elastic model with microtemperatures. (English) Zbl 07875991

Summary: In this paper, we consider, from a numerical point of view, a two-temperature poro-thermoelastic problem. The model is written as a coupled linear system of hyperbolic and elliptic partial differential equations. An existence result is proved and energy decay properties are recalled. Then we introduce a fully discrete approximation by using the finite element method and the implicit Euler scheme. Some a priori error estimates are obtained, from which the linear convergence of the approximation is deduced under an appropriate additional regularity. Finally, some numerical simulations are performed to demonstrate the accuracy of the approximation, the decay of the discrete energy and the behaviour of the solution depending on a constitutive parameter.

MSC:

74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74H20 Existence of solutions of dynamical problems in solid mechanics
74H40 Long-time behavior of solutions for dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

References:

[1] Abo-Dahab, S.M. (2020). A two-temperature generalized magneto-thermoelastic formulation for a rotating medium with thermal shock under hydrostatic initial stress, Continuum Mechanics and Thermodynamics 32(3): 883-900.
[2] Ali, G. and Romano, V. (2017). Existence and uniqueness for a two-temperature energy-transport model for semiconductors, Journal of Mathematical Analysis and Applications 449(2): 1248-1264. · Zbl 1457.80004
[3] Barabasz, B., Gajda-Zagórska, E., Migórski, S., Paszyński, M., Schaefer, R. and Smołka, M. (2014). A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24(4): 865-886, DOI: 10.2478/amcs-2014-0064. · Zbl 1309.49033
[4] Bazarra, N., Campo, M. and Fernández, J.R. (2019). A thermoelastic problem with diffusion, microtemperatures, and microconcentrations, Acta Mechanica 230: 31-48. · Zbl 1412.74018
[5] Bazarra, N., Fernández, J.R., Magaña, A. and Quintanilla, R. (2020). Numerical analysis of a dual-phase-lag model involving two temperatures, Mathematical Methods in the Applied Sciences 43(5): 2759-2771. · Zbl 1452.65223
[6] Campo, M., Copetti, M.I., Fernández, J.R. and Quintanilla, R. (2022). On existence and numerical approximation in phase-lag thermoelasticity with two temperatures, Discrete and Continuous Dynamical Systems B 27(4): 2221-2247. · Zbl 1490.35481
[7] Campo, M., Fernández, J., Kuttler, K., Shillor, M. and Viano, J. (2006). Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Computer Methods in Applied Mechanics and Engineering 196(1): 476-488. · Zbl 1120.74651
[8] Chen, P. and Gurtin, M.E. (1968). On a theory of heat involving two temperatures, Zeitschrift fur angewandte Mathematik und Physik 19: 614-627. · Zbl 0159.15103
[9] Chen, P., Gurtin, M.E. and Williams, W. (1969). On the thermodynamics of non-simple materials with two temperatures, Zeitschrift fur angewandte Mathematik und Physik 20: 107-112. · Zbl 0164.26104
[10] Chen, P., Gurtin, M.E. and Williams, W.O. (1968). A note on non-simple heat conduction, Zeitschrift fur angewandte Mathematik und Physik 19: 969-970.
[11] Ciarlet, P. (1993). Basic error estimates for elliptic problems, in P.G. Ciarlet and J. Lions (Eds), Handbook of Numerical Analysis, Springer-Verlag, Berlin, pp. 17-351. · Zbl 0875.65086
[12] Clement, P. (1975). Approximation by finite element functions using local regularization, RAIRO Mathematical Modeling and Numerical Analysis 9(R2): 77-84. · Zbl 0368.65008
[13] Cowin, S. (1985). The viscoelastic behavior of linear elastic materials with voids, Journal of Elasticity 15: 185-191. · Zbl 0564.73044
[14] Cowin, S. and Nunziato, J. (1983). Linear elastic materials with voids, Journal of Elasticity 13: 125-147. · Zbl 0523.73008
[15] D’Apice, C., Zampoli, V. and Chiriţă, S. (2020). On the wave propagation in the thermoelasticity theory with two temperatures, Journal of Elasticity 140(2): 257-272. · Zbl 1440.74107
[16] Feng, B. and Apalara, T.A. (2019). Optimal decay for a porous elasticity system with memory, Journal of Mathematical Analysis and Applications 470(2): 1108-1128. · Zbl 1451.74076
[17] Feng, B. and Yin, M. (2019). Decay of solutions for a one-dimensional porous elasticity system with memory: The case of non-equal wave speeds, Mathematics and Mechanics of Solids 24(8): 2361-2373. · Zbl 07254358
[18] Fernández, J.R. and Quintanilla, R. (2021a). Two-temperatures thermo-porous-elasticity with microtemperatures, Applied Mathematical Letters 111: 106628. · Zbl 1451.35211
[19] Fernández, J.R. and Quintanilla, R. (2021b). Uniqueness and exponential instability in a new two-temperature thermoelastic theory, AIMS Mathematics 6(6): 5440-5451. · Zbl 1484.35355
[20] Grot, R. (1969). Thermodynamics of a continuum with microstructure, International Journal of Engineering Science 7(8): 801-814. · Zbl 0185.53902
[21] Gruais, I. and Poliševski, D. (2017). Model of two-temperature convective transfer in porous media, Zeitschrift fur angewandte Mathematik und Physik 68(6): 143. · Zbl 1370.35039
[22] Ieşan, D. (2007). Thermoelasticity of bodies with microstructure and microtemperatures, International Journal of Solids and Structures 44(25-26): 8648-8653. · Zbl 1167.74390
[23] Ieşan, D. and Quintanilla, R. (2000). On a theory of thermoelasticity with microtemperatures, Journal of Thermal Stresses 23(3): 195-215.
[24] Kumar, K., Prasad, R. and Kumar, R. (2020). Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity, European Journal of Mechanics A: Solids 82: 104007. · Zbl 1477.74025
[25] Leseduarte, M., Magaña, A.M. and Quintanilla, R. (2010). On the time decay of solutions in porous-thermo-elasticity of type II, Discrete and Continuous Dynamical Systems B 13(2): 375-391. · Zbl 1197.35053
[26] Liu, Z. and Zheng, S. (1999). Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton. · Zbl 0924.73003
[27] Magaña, A., Miranville, A. and Quintanilla, R. (2020). Exponential decay of solutions in type II thermo-porous-elasticity with quasi-static microvoids, Journal of Mathematical Analysis and Applications 492(2): 124504. · Zbl 1453.35167
[28] Magaña, A. and Quintanilla, R. (2018). Exponential stability in type III thermoelasticity with microtemperatures, Zeitschrift fur angewandte Mathematik und Physik 69(5): 129. · Zbl 1401.74075
[29] Magaña, A. and Quintanilla, R. (2021). Decay of quasi-static porous-thermo-elastic waves, Zeitschrift fur angewandte Mathematik und Physik 72: 125. · Zbl 1465.74050
[30] Makki, A., Miranville, A. and Sadaka, G. (2019). On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials, Discrete and Continuous Dynamical Systems Series B 24(3): 1341-1365. · Zbl 1409.35109
[31] Makki, A., Miranville, A. and Sadaka, G. (2021). On the conserved Caginalp phase-field system with logarithmic potentials based on the Maxwell-Cattaneo law with two temperatures, Applied Mathematics and Optimations 84(2): 1285-1316. · Zbl 1475.35089
[32] Miranville, A. and Quintanilla, R. (2016). On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Mathematical Methods in the Applied Sciences 39(15): 4385-4397. · Zbl 1348.35102
[33] Miranville, A. and Quintanilla, R. (2019). Exponential decay in one-dimensional type III thermoelasticity with voids, Applied Mathematical Letters 94: 30-37. · Zbl 1415.35259
[34] Miranville, A. and Quintanilla, R. (2020). Exponential decay in one-dimensional type II thermoviscoelasticity with voids, Journal of Computational and Applied Mathematics 368: 112573. · Zbl 1439.35071
[35] Mukhopadhyay, S., Picard, R., Trostorff, S. and Waurick, M. (2017). A note on a two-temperature model in linear thermoelasticity, Mathematics and Mechanics of Solids 22(5): 905-918. · Zbl 1371.74032
[36] Nunziato, J. and Cowin, S.C. (1979). A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis 72: 175-201. · Zbl 0444.73018
[37] Pamplona, P., Muñoz-Rivera, J.M. and Quintanilla, R. (2011). On the decay of solutions for porous-elastic systems with history, Journal of Mathematical Analysis and Applications 379(2): 682—705. · Zbl 1259.35136
[38] Passarella, F., Tibullo, V. and Viccione, G. (2017). Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures, Meccanica 52: 3033-3041. · Zbl 1380.74058
[39] Riha, P. (1975). On the theory of heat-conducting micropolar fluids with microtemperatures, Acta Mechanica 23: 1-8. · Zbl 0321.76005
[40] Riha, P. (1976). On the microcontinuum model of heat conduction in materials with inner structure, International Journal of Engineering Science 14(6): 529-535.
[41] Sarkar, N. and Mondal, S. (2020). Thermoelastic plane waves under the modified Green-Lindsay model with two-temperature formulation, Zeitschrift fur Angewandte Mathematik und Mechanik 100(11): e201900267. · Zbl 07812943
[42] Sellitto, A., Carlomagno, I. and Domenico, M.D. (2021). Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model, Zeitschrift fur Angewandte Mathematik und Mechanik 72(1): 7. · Zbl 1460.80001
[43] Warren, W. and Chen, P.J. (1973). Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica 16: 83-117.
[44] Youssef, H. and Elsibai, K.A. (2015). On the theory of two-temperature thermoelasticity without energy dissipation of Green-Naghdi model, Applicable Analysis 94(10): 1997-2010. · Zbl 1327.80003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.