×

Minimal normalization of Wiener-Hopf operators in spaces of Bessel potentials. (English) Zbl 0915.47020

The authors consider a class of Wiener-Hopf operators acting between spaces of Bessel potentials \[ W=r_+A\Bigl| _{H^r_+}:H^r_+ \to H^s_+ (R_+),\quad r,s \in R^n, \] where \(A\) is a translation invariant homomorphism between \(H^r\) and \(H^s\), and \(r_+\) is a restriction operator \(r_+(H^s)\) on \(\overline {R}_+\) and \(H^s (R_+)=\times_{j=1}^n H^{s_j} (R_+), \;s= (s_1,s_2,\dots,s_n)\). Such operators arise with the consideration of some diffraction problems and as rule they are not normal solvable. Passing to lifted Wiener-Hopf operator they obtain the problem with matrix symbol, continuous on the real line and having a jump at infinity. Using the idea of normalization the authors study the possibility for obtaining the explicit formula for solution with help of generalized inverse operators. The main attention is given to the scalar case \((n=1)\) and to the symmetric case \((r=s)\).

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
Full Text: DOI

References:

[1] Bastos, M. A.; dos Santos, A. F.; Duduchava, R., Finite interval convolution operators on Bessel potential spaces\(H^s}_p \), Math. Nachr., 173, 49-63 (1995) · Zbl 0830.47020
[2] Câmara, M. C.; Lebre, A. B.; Speck, F.-O., Meromorphic factorization, partial index estimates and elastodynamic diffraction problem, Math. Nachr., 157, 291-317 (1992) · Zbl 0769.73020
[3] Castro, L. F.; Speck, F.-O., On the characterization of the intermediate space in generalized factorizations, Math. Nachr., 176, 39-54 (1995) · Zbl 0840.47015
[4] Duduchava, R., Integral Equations with Fixed Singularities (1979), Teubner Texte zur Mathematik: Teubner Texte zur Mathematik Teubner, Leipzig · Zbl 0429.45002
[5] Duduchava, R., Wiener-Hopf equations with the transmission property, Integral Equations Operator Theory, 15, 412-426 (1992) · Zbl 0754.45005
[6] Dybin, V. B., Normalization of the Wiener-Hopf operator, Dokl. Akad. Nauk SSSR, 191, 437-441 (1970) · Zbl 0221.47026
[7] Eskin, G., Boundary Value Problems for Elliptic Pseudodifferential Equations (1981), American Mathematical Society: American Mathematical Society Providence · Zbl 0458.35002
[8] Gantmacher, F. R., Theory of Matrices I (1959), Chelsea: Chelsea New York · Zbl 0085.01001
[9] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman London · Zbl 0695.35060
[10] Hörmander, L., Linear Partial Differential Operators (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0321.35001
[11] Hurd, R. A.; Lüneburg, E., Diffraction by an anisotropic impedance halfplane, Canad. J. Phys., 63, 1135-1140 (1985)
[12] Khaikin, M. I., On the regularization of operators with non-closed range, Izv. Vyssh. Uchebn. Zaved. Mat., 8, 118-123 (1970) · Zbl 0205.14202
[13] V. G. Kravchenko, The Noether Theory of Systems of Singular Integral Equations with Shift, Kiev, 1987; V. G. Kravchenko, The Noether Theory of Systems of Singular Integral Equations with Shift, Kiev, 1987
[14] Kravchenko, V. G., On normalization of singular integral operators, Sov. Math. Dokl., 32, 880-883 (1985) · Zbl 0658.45006
[15] Lebre, A. B.; Moura Santos, A.; Speck, F.-O., Factorization of a class of matrices generated by Sommerfeld diffraction problems with oblique derivatives, Math. Methods Appl. Sci., 20, 1185-1198 (1997) · Zbl 0893.47012
[16] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications I (1972), Springer-Verlag: Springer-Verlag Berlin · Zbl 0223.35039
[17] Lüneburg, E.; Hurd, R. A., On the diffraction problem of a half-plane with different face impedances, Canad. J. Phys., 62, 853-860 (1984) · Zbl 1043.78533
[18] Meister, E.; Speck, F.-O., Modern Wiener-Hopf methods in diffraction theory, (Sleeman, B. D.; Jarvis, R. J., Ordinary and Partial Differential Equations II (1989), Longman: Longman London), 130-171 · Zbl 0689.35024
[19] Meister, E.; Speck, F.-O., Boundary integral equation methods for canonical problems in diffraction theory, (Brebbia, C. A.; Wendland, W. L.; Kuhn, G., Boundary Elements IX (1987), Springer-Verlag: Springer-Verlag Berlin), 59-77
[20] Meister, E.; Speck, F.-O., Diffraction problems with impedance conditions, Appl. Anal., 22, 193-211 (1986) · Zbl 0569.35018
[21] Mikhlin, S. G.; Prössdorf, S., Singular Integral Operators (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0612.47024
[22] Moura Santos, A.; Speck, F.-O., Sommerfeld diffraction problems with oblique derivatives, Math. Methods Appl. Sci., 20, 635-652 (1997) · Zbl 0888.35028
[23] Moura Santos, A.; Speck, F.-O.; Teixeira, F. S., Compatibility conditions in some diffraction problems, (Serbest, A. H.; Cloude, S. R., Direct and Inverse Electromagnetic Scattering (1996), Longman: Longman London), 25-38 · Zbl 0869.35102
[24] Penzel, F.; Speck, F.-O., Asymptotic expansion of singular operators on Sobolev spaces, Asymptotic Anal., 7, 287-300 (1993) · Zbl 0809.47026
[25] Prössdorf, S., Some Classes of Singular Equations (1978), North-Holland: North-Holland Amsterdam · Zbl 0416.45003
[26] Rempel, S.; Schulze, B.-W., Asymptotics for Elliptic Mixed Boundary Problems (1989), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0689.35104
[27] dos Santos, A. F.; Lebre, A. B.; Teixeira, F. S., The diffraction problem for a half-plane with different face impedances revisited, J. Math. Anal. Appl., 140, 485-509 (1989) · Zbl 0693.47024
[28] Santos, P. A.; Teixeira, F. S., Sommerfeld half-plane problems with higher-order boundary conditions, Math. Nachr., 171, 269-282 (1995) · Zbl 0814.35017
[29] Talenti, G., Sulle equazioni integrali di Wiener-Hopf, Boll. Un. Math. Ital., 7, 18-118 (1973) · Zbl 0281.45007
[30] F. S. Teixeira, Wiener-Hopf Operators in Sobolev Spaces and Applications to Diffraction Theory, Instituto Superior Técnico, U.T.L. Lisbon, 1989; F. S. Teixeira, Wiener-Hopf Operators in Sobolev Spaces and Applications to Diffraction Theory, Instituto Superior Técnico, U.T.L. Lisbon, 1989
[31] Wendland, W. L.; Stephan, E.; Hsiao, G. C., On the integral equation method for the plane mixed boundary value problem of the Laplacian, Math. Methods Appl. Sci., 1, 265-321 (1979) · Zbl 0461.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.