×

Spatiotemporal dynamics of periodic waves in SIR model with driving factors. (English) Zbl 07866340

Summary: The world faces Covid-19 waves, and the overall pattern of confirmed cases shows periodic oscillations. In this paper, we investigate the spatiotemporal spread of Covid-19 in the network-organized SIR model with an extrinsic incubation period of the driving factors. Firstly, Our analysis shows the occurrences of Hopf bifurcation and periodic outbreaks consistent with the actual spread of Covid-19. And we investigate periodic waves on spatial scales using Turing instability, and the spread of infected individuals increases the localized hot spots. We study the effect of the incubation period, and more incubation periods generate Turing instability resulting in periodic outbreaks. There is an occurrence of bursting states at peaks of periodic waves due to small diffusion of infected and susceptible, which means stable and unstable areas try to convert each other due to high competition among nodes. Also, We note the disappearance of these bursts when infected and susceptible individuals’ movements are easier; thus, the dominance of infected individuals prevails everywhere. Effective policy interventions and seasonality can cause periodic perturbations in the model, and therefore we study the impact of these perturbations on the spread of Covid-19. Periodic perturbations on the driving factors, infected individuals show co-existing spatial patterns. Chaotic outbreak becomes periodic outbreaks through alternating periodic or period-2 outbreaks as we regulate the amplitude and frequency of infected individuals. In short, regulations can erase period-2 and chaotic spread through policy interventions.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Baker, R. E., Infectious disease in an era of global change, Nat. Rev. Microbiol., 20, 193-205 (2022) · doi:10.1038/s41579-021-00639-z
[2] Song, Q. Q., Risk and outcome of breakthrough COVID-19 infections in vaccinated patients with cancer: real-world evidence from the national COVID cohort collaborative, J. Clin. Oncol., 40, 1414-27 (2022) · doi:10.1200/JCO.21.02419
[3] Sharafeldin, N., Outcomes of COVID-19 in patients with cancer: report from the national COVID cohort collaborative (N3C), J. Clin. Oncol., 39, 2232-46 (2021) · doi:10.1200/JCO.21.01074
[4] Hari Rao, V. S.; Durvasula, R., Dynamic Models of Infectious Diseases (2013), New York: Springer, New York
[5] Brauer, F.; Castillo-Chavez, C.; Feng, Z. L., Mathematical Models in Epidemiology (2019), Berlin: Springer, Berlin · Zbl 1433.92001
[6] Lopez-Cruz, R., Global stability of an SAIRD epidemiological model with negative feedback, Adv. Cont. Discr. Mod., 2022, 41 (2022) · doi:10.1186/s13662-022-03712-w
[7] Sidiki, A.; Tchuente, M., The basic reproduction number for cellular SIR networks, Acta Biotheor., 62, 417-27 (2014) · doi:10.1007/s10441-014-9231-y
[8] Huang, C.; Cao, J.; Wen, F.; Yang, X., Stability analysis of SIR model with distributed delay on complex networks, PLoS One, 11 (2016) · doi:10.1371/journal.pone.0158813
[9] Harianto, J., Local stability analysis of an SVIR epidemic model, J. Matematika Murni dan Aplikasi, 5, 20-28 (2017) · doi:10.18860/ca.v5i1.4388
[10] Hamdan, N’; Kilicman, A., A fractional order SIR epidemic model for dengue transmission, Chaos Solitons Fractals, 114, 55-62 (2018) · Zbl 1415.92179 · doi:10.1016/j.chaos.2018.06.031
[11] Adamu, H. A., Mathematical modelling using improved SIR model with more realistic assumptions, Int. J. Eng. Appl. Sci., 6, 64-69 (2019) · doi:10.31873/IJEAS.6.1.22
[12] Zheng, Q. Q.; Pandey, V.; Shen, J.; Xu, Y.; Guan, L., Pattern dynamics in the epidemic model with diffusion network, Europhys. Lett., 137, 4 (2022) · doi:10.1209/0295-5075/ac58bd
[13] Yang, Q.; Zhang, X.; Jiang, D., Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Levy jumps, Nonlinear Dyn., 107, 3 (2022) · doi:10.1007/s11071-021-07095-7
[14] Knobler, S.; Mahmoud, A.; Lemon, S., The Impact of Globalization on Infectious Disease Emergence and Control: Exploring the Consequences and Opportunities (2006), Washington: National Academies Press, Washington
[15] Stolerman, L. M.; Coombs, D.; Boatto, S., SIR-network model and its application to Dengue fever, SIAM J. Appl. Math., 75, 6 (2015) · Zbl 1357.92075 · doi:10.1137/140996148
[16] Chang, L. L.; Gao, S. P.; Wang, Z., Optimal control of pattern formations for an SIR reaction-diffusion epidemic model, J. Theor. Biol., 536, 7 (2022) · Zbl 1483.92126 · doi:10.1016/j.jtbi.2022.111003
[17] Chang, S. L.; Piraveenan, M.; Prokopenko, M., The effects of imitation dynamics on vaccination behaviours in SIR-network model, Int. J. Environ. Res. Public Health, 16, 14 (2019) · doi:10.3390/ijerph16142477
[18] Turing, A. M., The chemical basis of morphogenesis, Bull. Math. Biol., 52, 153-197 (1990) · doi:10.1016/S0092-8240(05)80008-4
[19] Othmer, H. G.; Scriven, L. E., Instability and dynamic pattern in cellular networks, J. Theor. Biol., 32, 3 (1971) · doi:10.1016/0022-5193(71)90154-8
[20] Wang, Z. Q.; Li, Y.; Xu, Y.; Kapitaniak, T.; Kurths, J., Coherence-resonance chimeras in coupled HR neurons with alpha-stable Levy noise, J. Stat. Mech. (2022) · Zbl 1539.92030 · doi:10.1088/1742-5468/ac6254
[21] Ouyang, Q., Introduction to Nonlinear Science and Pattern Dynamics (2010), Beijing: Peking University Press, Beijing
[22] Nakao, H.; Mikhailov, A. S., Turing patterns in network-organized activator-inhibitor systems, Nat. Phys., 6, 544 (2010) · doi:10.1038/nphys1651
[23] Brauns, F.; Weyer, H.; Halatek, J.; Yoon, J.; Frey, E., Wavelength selection by interrupted coarsening in reaction-diffusion systems, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.104101
[24] Haas, P. A.; Goldstein, R. E., Turing’s diffusive threshold in random reaction-diffusion systems, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.238101
[25] Diego, X.; Marcon, L.; Müller, P.; Sharpe, J., Key features of Turing systems are determined purely by network topology, Phys. Rev. X, 8 (2018) · doi:10.1103/PhysRevX.8.021071
[26] Liu, Y. C.; Dehmamy, N.; Barabási, A-L, Isotopy and energy of physical networks, Nat. Phys., 17, 216-22 (2021) · doi:10.1038/s41567-020-1029-z
[27] Zheng, Q. Q.; Shen, J. W., Turing instability induced by random network in FitzHugh-Nagumo model, Appl. Math. Comput., 381 (2020) · Zbl 1488.35077 · doi:10.1016/j.amc.2020.125304
[28] Zheng, Q. Q.; Shen, J. W.; Xu, Y., Turing instability in the reaction-diffusion network, Phys. Rev. E, 102 (2020) · doi:10.1103/PhysRevE.102.062215
[29] Mimar, S.; Juane, M. M.; Park, J.; Muñuzuri, A. P.; Ghoshal, G., Turing patterns mediated by network topology in homogeneous active systems, Phys. Rev. E, 99 (2019) · doi:10.1103/PhysRevE.99.062303
[30] Huang, J.; Liu, Z.; Ruan, S., Bifurcation and temporal periodic patterns in a plant-pollinator model with diffusion and time delay effects, J. Biol. Dyn., 11, 138-59 (2017) · Zbl 1448.92375 · doi:10.1080/17513758.2016.1181802
[31] Tian, C. R.; Ruan, S. G., Pattern formation and synchronism in an Allelopathic Plankton model with delay in a network, SIAM J. Appl. Dyn. Syst., 18, 1 (2019) · Zbl 1416.34071 · doi:10.1137/18M1204966
[32] Barabasi, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[33] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Berlin: Springer, Berlin · Zbl 0515.34001
[34] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (1995), Berlin: Springer, Berlin · Zbl 0829.58029
[35] Yang, W. J., Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation, Chin. Phys. B, 31 (2022) · doi:10.1088/1674-1056/ac1e0b
[36] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4 (1976) · doi:10.1016/0021-9991(76)90041-3
[37] Rietkerk, M.; Bastiaansen, R.; Banerjee, S.; van de Koppel, J.; Baudena, M.; Doelman, A., Evasion of tipping in complex systems through spatial pattern formation, Science, 374, 169 (2021) · doi:10.1126/science.abj0359
[38] Elias, C.; Sekri, A.; Leblanc, P.; Cucherat, M.; Vanhems, P., The incubation period of COVID-19: a meta-analysis, Int. J. Inf. Dis., 104, 708-10 (2021) · doi:10.1016/j.ijid.2021.01.069
[39] Zheng, Q. Q.; Shen, J.; Xu, Y.; Pandey, V.; Guan, L., Pattern mechanism in stochastic SIR networks with ER connectivity, Physica A, 603 (2022) · Zbl 1527.34101 · doi:10.1016/j.physa.2022.127765
[40] Chen, M. H.; Xu, C.; Xu, Z.; He, W.; Zhang, H.; Su, J.; Song, Q., Uncovering the dynamic effects of DEX treatment on lung cancer by integrating bioinformatic inference and multiscale modeling of scRNA-seq and proteomics data, Comput. Biol. Med., 149 (2022) · doi:10.1016/j.compbiomed.2022.105999
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.