×

Ratios conjecture for quadratic twists of modular \(L\)-functions. (English) Zbl 07864519

In this paper under review, the authors study the ratios conjecture with one shift in the numerator and denominator for the family of quadratic twist of modular \(L\)-functions averaged over all odd positive \(n\). The used argument is inspired from the proof of the Čech’s theorem (See Theorem 1.2 in the paper: [M. Čech, “The ratios conjecture for real Dirichlet characters and multiple Dirichlet series”, Preprint, arXiv:2110.04409]).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M41 Other Dirichlet series and zeta functions

References:

[1] Farmer, DW, Long mollifiers of the Riemann zeta-function, Mathematika, 40, 1, 71-87, 1993 · Zbl 0783.11031 · doi:10.1112/S0025579300013723
[2] Conrey, JB; Farmer, DW; Zirnbauer, MR, Autocorrelation of ratios of \(L\)-functions, Commun. Number Theory Phys., 2, 3, 593-636, 2008 · Zbl 1178.11056 · doi:10.4310/CNTP.2008.v2.n3.a4
[3] Bui, HM; Florea, A.; Keating, JP, The ratios conjecture and upper bounds for negative moments of \(L\)-functions over function fields, Trans. Amer. Math. Soc., 376, 6, 4453-4510, 2023 · Zbl 1526.11046 · doi:10.1090/tran/8907
[4] Čech, M., The Ratios conjecture for real Dirichlet characters and multiple Dirichlet series, Trans. Amer. Math. Soc., 377, 3487-3528, 2024 · Zbl 07876053
[5] Gao, P.; Zhao, L., Ratios conjecture for quadratic Hecke \(L\)-functions in the Gaussian field, Monatsh. Math., 203, 1, 63-90, 2024 · Zbl 07789018 · doi:10.1007/s00605-023-01903-5
[6] Iwaniec, H.; Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 2004, Providence: American Mathematical Society, Providence · Zbl 1059.11001
[7] Soundararajan, K.; Young, MP, The second moment of quadratic twists of modular \(L\)-functions, J. Eur. Math. Soc. (JEMS), 12, 5, 1097-1116, 2010 · Zbl 1213.11165 · doi:10.4171/jems/224
[8] Gao, P.; Zhao, L., Lower-order terms of the one-leveldensity of a family of quadratic Hecke \(L\)-functions, J. Aust. Math. Soc., 114, 2, 178-221, 2023 · Zbl 1530.11038 · doi:10.1017/S1446788721000410
[9] Soundararajan, K., Nonvanishing of quadratic Dirichlet \(L\)-functions at \(s=\frac{1}{2} \), Ann. Math. (2), 152, 2, 447-488, 2000 · Zbl 0964.11034 · doi:10.2307/2661390
[10] Deligne, P., La conjecture de Weil. I, Inst. Hautes Etudes Sci. Publ. Math., 43, 273-307, 1974 · Zbl 0287.14001 · doi:10.1007/BF02684373
[11] Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, p. 97. Cambridge University Press, Cambridge (2007) · Zbl 1142.11001
[12] Shimura, G., On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3), 31, 1, 79-98, 1975 · Zbl 0311.10029 · doi:10.1112/plms/s3-31.1.79
[13] Bochner, S., A theorem on analytic continuation of functions in several variables, Ann. Math. (2), 39, 1, 14-19, 1939 · JFM 64.0321.02 · doi:10.2307/1968709
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.