×

Constrained motion design with distinct actuators and motion stabilization. (English) Zbl 07863772

Summary: The design of adaptive structures is one method to improve sustainability of buildings. Adaptive structures are able to adapt to different loading and environmental conditions or to changing requirements by either small or large shape changes. In the latter case, also the mechanics and properties of the deformation process play a role for the structure’s energy efficiency. The method of variational motion design, previously developed in the group of the authors, allows to identify deformation paths between two given geometrical configurations that are optimal with respect to a defined quality function. In a preliminary, academic setting this method assumes that every single degree of freedom is accessible to arbitrary external actuation forces that realize the optimized motion. These (nodal) forces can be recovered a posteriori. The present contribution deals with an extension of the method of motion design by the constraint that the motion is to be realized by a predefined set of actuation forces. These can be either external forces or prescribed length chances of discrete, internal actuator elements. As an additional constraint, static stability of each intermediate configuration during the motion is taken into account. It can be accomplished by enforcing a positive determinant of the stiffness matrix.
{© 2021 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
74Pxx Optimization problems in solid mechanics
74Kxx Thin bodies, structures

References:

[1] HousnerGW, BergmanLA, CaugheyTK, et al. Structural control: past, present, and future. J Eng Mech. 1997;123(9):897‐971. https://doi.org/10.1061/(ASCE)0733‐9399(1997)123:9(897). · doi:10.1061/(ASCE)0733‐9399(1997)123:9(897)
[2] SobekW, TeuffelP. Adaptive systems in architecture and structural engineering. Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways. Bellingham, WA: International Society for Optics and Photonics; 2001:36‐46.
[3] SpencerBF, NagarajaiahS. State of the art of structural control. J Struct Eng. 2003;129(7):845‐856. https://doi.org/10.1061/(ASCE)0733‐9445(2003)129:7(845). · doi:10.1061/(ASCE)0733‐9445(2003)129:7(845)
[4] KorkmazS. A review of active structural control: challenges for engineering informatics. Comput Struct. 2011;89(23):2113‐2132.
[5] IrschikH. A review on static and dynamic shape control of structures by piezoelectric actuation. Eng Struct. 2002;24(1):5‐11. https://doi.org/10.1016/S0141‐0296(01)00081‐5. · doi:10.1016/S0141‐0296(01)00081‐5
[6] AbdullahMM, RichardsonA, HanifJ. Placement of sensors/actuators on civil structures using genetic algorithms. Earthq Eng Struct Dyn. 2001;30(8):1167‐1184. https://doi.org/10.1002/eqe.57. · doi:10.1002/eqe.57
[7] GuptaV, SharmaM, ThakurN. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. J Intell Mater Syst Struct. 2010;21(12):1227‐1243. https://doi.org/10.1177/1045389X10381659. · doi:10.1177/1045389X10381659
[8] MaschingH, BletzingerK‐U. Parameter free structural optimization applied to the shape optimization of smart structures. Finite Elem Anal Des. 2016;111:33‐45. https://doi.org/10.1016/j.finel.2015.12.008. · doi:10.1016/j.finel.2015.12.008
[9] ReksowardojoAP, SenatoreG, Smith IanFC. Actuator layout optimization for adaptive structures performing large shape changes. In: SmithIFC (ed.), DomerB (ed.), eds. Advanced Computing Strategies for Engineering, Lecture Notes in Computer Science. Basel, Switzerland: Springer International Publishing; 2018:111‐129.
[10] GöppertK, SteinM. A spoked wheel structure for the world’s largest convertible roof – the new commerzbank arena in Frankfurt, Germany. Struct Eng Int. 2007;17(4):282‐287.
[11] LienhardJ, SchleicherS, PoppingaS, et al. Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir Biomim. 2011;6(4):045001.
[12] MauteKK, ReichGW. Integrated multidisciplinary topology optimization approach to adaptive wing design. J Aircr. 2006;43(1):253‐263. https://doi.org/10.2514/1.12802. · doi:10.2514/1.12802
[13] CampanileLF. Shape‐adaptive wings the unfulfilled dream of flight. In: LiebeR (ed.), ed. WIT Transactions on State of the Art in Science and Engineering. 1st ed.Southhampton, UK: WIT Press; 2006:400‐419.
[14] VasistaS, TongL, WongKC. Realization of morphing wings: a multidisciplinary challenge. J Aircr. 2012;49(1):11‐28. https://doi.org/10.2514/1.C031060. · doi:10.2514/1.C031060
[15] WeisshaarTA. Morphing aircraft systems: historical perspectives and future challenges. J Aircr. 2013;50(2):337‐353. https://doi.org/10.2514/1.C031456. · doi:10.2514/1.C031456
[16] AjajRM, BeaverstockCS, FriswellMI. Morphing aircraft: the need for a new design philosophy. Aerosp Sci Technol. 2016;49:154‐166. https://doi.org/10.1016/j.ast.2015.11.039. · doi:10.1016/j.ast.2015.11.039
[17] InoueF. In: BalaguerC (ed.), AbderrahimM (ed.), eds. Development of adaptive construction structure by variable geometry truss. Robotics and Automation in Construction: InTech; 2008.
[18] SenatoreG, DuffourP, WinslowP. Synthesis of minimum energy adaptive structures. Struct Multidiscip Optim. 2019;60(3):849‐877. https://doi.org/10.1007/s00158‐019‐02224‐8. · doi:10.1007/s00158‐019‐02224‐8
[19] Graells RoviraA, Mirats TurJM. Control and simulation of a tensegrity‐based mobile robot. Robot Auton Syst. 2009;57(5):526‐535.
[20] van deWijdevenJ, deJagerB. Shape change of tensegrity structures: design and control. Paper presented at: Proceedings of the 2005, American Control Conference, Portland, Oregon; vol. 4; 2005:2522‐2527.
[21] SychterzAC, SmithIFC. Deployment and shape change of a tensegrity structure using path‐planning and feedback control. Front Built Environ. 2018;4:45. https://doi.org/10.3389/fbuil.2018.00045. · doi:10.3389/fbuil.2018.00045
[22] SigmundO. On the design of compliant mechanisms using topology optimization. Mech Struct Mach. 1997;25(4):493‐524. https://doi.org/10.1080/08905459708945415. · doi:10.1080/08905459708945415
[23] KotaS, JooJ, LiZ, RodgersSM, SniegowskiJ. Design of compliant mechanisms: applications to MEMS. Analog Integr Circ Sig Process. 2001;29(1):7‐15. https://doi.org/10.1023/A:1011265810471. · doi:10.1023/A:1011265810471
[24] LuK‐J, KotaS. An effective method of synthesizing compliant adaptive structures using load path representation. J Intell Mater Syst Struct. 2005;16(4):307‐317. https://doi.org/10.1177/1045389X05050104. · doi:10.1177/1045389X05050104
[25] CampanileLF. Modal synthesis of flexible mechanisms for airfoil shape control. J Intell Mater Syst Struct. 2008;19(7):779‐789. https://doi.org/10.1177/1045389X07080638. · doi:10.1177/1045389X07080638
[26] PagitzM, BoldJ. Shape‐changing shell‐like structures. Bioinspir Biomim. 2013;8(1):016010. https://doi.org/10.1088/1748‐3182/8/1/016010. · doi:10.1088/1748‐3182/8/1/016010
[27] RusD, TolleyMT. Design, fabrication and control of soft robots. Nature. 2015;521(7553):467‐475. https://doi.org/10.1038/nature14543. · doi:10.1038/nature14543
[28] IbrahimbegovicA, Knopf?LenoirC, Ku?erováA, VillonP. Optimal design and optimal control of structures undergoing finite rotations and elastic deformations. Int J Numer Methods Eng. 2004;61(14):2428‐2460. https://doi.org/10.1002/nme.1150. · Zbl 1075.74607 · doi:10.1002/nme.1150
[29] MasicM, SkeltonRE. Path planning and open‐loop shape control of modular tensegrity structures. J Guid Control Dyn. 2005;28(3):421‐430. https://doi.org/10.2514/1.6872. · doi:10.2514/1.6872
[30] VeuveN, SychterzAC, SmithIFC. Adaptive control of a deployable tensegrity structure. Eng Struct. 2017;152:14‐23. https://doi.org/10.1016/j.engstruct.2017.08.062. · doi:10.1016/j.engstruct.2017.08.062
[31] SachseR, BischoffM. A variational formulation for motion design of adaptive compliant structures. ArXiv [Preprint], revised version submitted to IJNME; 2020. https://arxiv.org/abs/2007.01435. Accessed August 4, 2020.
[32] MartinsJRRA, SturdzaP, AlonsoJJ. The complex‐step derivative approximation. ACM Trans Math Softw. 2003;29(3):245‐262. https://doi.org/10.1145/838250.838251. · Zbl 1072.65027 · doi:10.1145/838250.838251
[33] FikeJ, AlonsoJ. The development of hyper‐dual numbers for exact second‐derivative calculations. Paper presented at: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2011; American Institute of Aeronautics and Astronautics, Orlando, Florida
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.