×

On various types of density of numerical radius attaining operators. (English) Zbl 07855978

The authors establish several results for Banach spaces with the Bishop-Phelps-Bollobás point property for the numerical radius (BPBpp-nu).
We start by reviewing some conditions and terminology. Let \(X\) be a Banach space, the set of states of \(X\) is \[ \Pi(X) =\{(x,x^*)\in S_X\times S_{X^*} : x^*(x)=1\}. \] The numerical radius of \(T \in \mathcal{L}(X)\) and the numerical index of \(X\) are defined, respectively, by \[ v(T) = \sup\{|x^*(T(x))|:(x, x^*) \in \Pi(X)\} \] and \[ n(X) = \inf\{v(T):T\in L(X),\ \|T\| = 1\}. \]
Definition 2.1. We say that \(X\) has the Bishop-Phelps-Bollobás point property for the numerical radius (BPBpp-nu) if, given \(\epsilon > 0,\) there is \(\eta(\epsilon) > 0\) such that, whenever \(T \in \mathcal{L}(X)\) with \(v(T) = 1\) and \((x, x^*) \in \Pi(X)\) satisfy \(|x^*(T(x))| > 1-\eta(\epsilon)\), there exists \(S\in \mathcal{L}(X)\) with \(v(S) = 1\) such that \(|x^*(S(x))| = 1\) and \(\|S- T\| < \epsilon\).
The authors give a summary of known results (including a list of Banach spaces with the aforementioned property).
Let \(G\) be a Hausdorff topological group with the identity element \(e\) and \(T\) be a Hausdorff topological space. An action \((\cdot.\cdot)\) of \((G, T)\) is a continuous function from \(G\times T\) to \(T\) such that \((e,t)=t\) and \((g_1,(g_2,t))=(g_1g_2,t),\) for every \( g_1,g_2 \in G\) and \( t \in T\). The action is said to be transitive if \(T = \{(g, t): g\in G\}\) for every \(t\in T\), and said to be micro-transitive if \(\{(g, t): g\in U\}\) is a neighbourhood of \(t \in T \) for every \(t \in T,\) whenever \(U\) is a neighbourhood of \(e \in G\). The second numerical index of \(X\) is defined by \[ n'(X)=\max \{k \geq 0: k\|T+\mathcal{Z}(X)\| \leq v(T) \text{ for all } T\in L(X)\}, \] with \(\mathcal{Z}(X)\) denoting the set of all skew Hermitian operators on \(X\) and \(\|T+\mathcal{Z}(X)\| =\inf \{\|T+S\|:S \in \mathcal{Z}(X)\}\).
Given a Banach space \(X\), we may take the group of surjective isometries on \(X\) as the group \(G\) and \(S_X\) as the topological space \(T\). We then say that \(X\) (or the norm of \(X\)) is micro-transitive (respectively, transitive) if the canonical action is micro-transitive (respectively, transitive).
The main theorem of Section 2 is as follows.:
Theorem 2.2. If the norm of \(X\) is micro-transitive and \(n'(X) > 0\), then \(X\) satisfies the BPBpp-nu.
The proof of this theorem is given in Section 2 and it follows as a corollary that Hilbert spaces (both real or complex) also have BPBpp-nu.
An interesting result with a short and quite interesting proof formulates that, for Banach spaces with numerical index 1, the BPBpp-nu is equivalent to being one-dimensional.
Motivated by the restrictive behaviour of the Bishop-Phelps-Bollobás point property for the numerical radius, the authors investigate a weaker property, i.e., the \(\eta\) that appears in the definition of the BPBpp-nu depends on both a given \(\epsilon >0\) and also on the state \((x, x^*) \in \Pi(X).\) This property is denoted by \(L_{pp}\)-nu. They also review the strong subdifferentiability of a norm on \(X\) (SSD, for short) at \(x\in X\), meaning that \[ \lim_{t\to 0+} \frac{1}{t} (\| x+th\|-\|x\|)| \] exists uniformly for \(h \in B_X\).

MSC:

46B04 Isometric theory of Banach spaces
47A12 Numerical range, numerical radius
46B20 Geometry and structure of normed linear spaces
47B01 Operators on Banach spaces

References:

[1] Bishop, E, Phelps, R.A proof that every Banach space is subreflexive. Bull Amer Math Soc. 1961;67(1):97-98. · Zbl 0098.07905
[2] Lindenstrauss, J.On operators which attain their norm. Israel J Math. 1963;1(3):139-148. · Zbl 0127.06704
[3] Berg, ID, Sims, B.Denseness of operators which attain their numerical radius. J Aust Math Soc Ser A. 1984;36(1):130-133. · Zbl 0561.47004
[4] Cardassi, CS.Density of numerical radius attaining operators on some reflexive spaces. Bull Aust Math Soc. 1985;31(1):1-3. · Zbl 0557.47003
[5] Cardassi, CS. Numerical radius attaining operators, Banach spaces (Columbia, Mo, 1984). (Lecture Notes in Math; 1166). Berlin: Springer; 1985. p. 11-14. · Zbl 0609.47009
[6] Cardassi, CS.Numerical radius-attaining operators on \(C(K) \). Proc Amer Math Soc. 1985;95(4):537-543. · Zbl 0602.47020
[7] Acosta, MD, Paýa, R.Numerical radius attaining operators and the Radon-Nikodým property. Bull Lond Math Soc. 1993;25(1):67-73. · Zbl 0739.47004
[8] Payá, R.A counterexample on numerical radius attaining operators. Israel J Math. 1992;79(1):83-101. · Zbl 0784.47005
[9] Bollobás, B.An extension to the theorem of bishop and phelps. Bull Lond Math Soc. 1970;2(2):181-182. · Zbl 0217.45104
[10] Acosta, MD, Aron, RM, García, D, et al. The Bishop-Phelps-Bollobás theorem for operators. J Funct Anal. 2008;254(11):2780-2799. · Zbl 1152.46006
[11] Falcó, J.The Bishop-Phelps-Bollobás property for numerical radius on \(L_1 \). J Math Anal Appl. 2014;414(1):125-133. · Zbl 1332.46012
[12] Guirao, AJ, Kozhushkina, O.The Bishop-Phelps-Bollobás property for numerical radius in \(\ell_1(\mathbb{C}) \). Stud Math. 2013;218(1):41-54. · Zbl 1285.47008
[13] Kim, SK, Lee, HJ, Martín, M.On the Bishop-Phelps-Bollobás property for numerical radius. Abs Appl Anal. 2014:Article ID 479208. · Zbl 1473.46011
[14] Bonsall, FF, Duncan, J.Numerical ranges of operators on normed spaces and of elements of normed algebras. Cambridge University Press; 1971. (). · Zbl 0207.44802
[15] Bonsall, FF, Duncan, J.Numerical ranges II. Cambridge University Press; 1973. (). · Zbl 0262.47001
[16] Kim, SK, Lee, HJ, Martín, M, et al. On a second numerical index for Banach spaces. Proc R Soc Edinb Sect. 2020;150(2):1003-1051. · Zbl 1447.46011
[17] Acosta, MD, Fakhar, M, Soleimani-Mourchehkhorti, M.The Bishop-Phelps-Bollobás property for numerical radius of operators on \(L_1(\mu ) \). J Math Anal Appl. 2018;458(2):925-936. · Zbl 1481.47005
[18] Avilés, A, Guirao, AJ, Rodríguez, J.On the Bishop-Phelps-Bolloás property for numerical radius in \(C(K)\) spaces. J Math Anal Appl. 2014;419(1):395-421. · Zbl 1319.46005
[19] Choi, YC, Dantas, S, Jung, M.The Bishop-Phelps-Bollobás properties in complex Hilbert spaces. Math Nachr. 2021;294(11):2105-2120. · Zbl 1532.46006
[20] Dantas, S, Kim, SK, Lee, HJ.The Bishop-Phelps-Bollobás point property. J Math Anal Appl. 2016;444(2):1739-1751. · Zbl 1369.46011
[21] Dantas, S, Kadets, V, Kim, SK, et al. There is no operatorwise version of the Bishop-Phelps-Bollobás property. Linear Multilinear Algebra. 2020;68(9):1767-1778. · Zbl 1465.46011
[22] Banach, S.Theory of linear operations. Amsterdam: North-Holland; 1987. (North-Holland Mathematical Library; vol. 38). · Zbl 0613.46001
[23] Rolewicz, S.Metric linear spaces. Warsaw: PWN-Polish Scientific Publishers; 1985. (). · Zbl 0573.46001
[24] Becerra-Guerrero, J, Rodríguez-Palacios, A.Transitivity of the norm on Banach spaces. Extr Math. 2002;17(1):1-58. · Zbl 1006.46007
[25] Effros, EG.Transformation groups and \(C^* \) -algebras. Ann Math. 1965;81(1):38-55. · Zbl 0152.33203
[26] Cabello-Sánchez, F, Dantas, S, Kadets, V, et al. On Banach spaces whose group of isometries acts micro-transitively on the unit sphere. J Math Anal Appl. 2020;488(1):124046. · Zbl 1445.46011
[27] Kim, SK, Lee, HJ.Uniform convexity and the Bishop-Phelps-Bollobás property. Can J Math. 2014;66(2):373-386. · Zbl 1298.46016
[28] Kadets, V, Martín, M, Merí, J, et al. Convexity and smoothness of Banach spaces with numerical index one. Illinois J Math. 2009;53(1):163-182. · Zbl 1197.46008
[29] Dantas, S, Kim, SK, Lee, HJ, et al. Local Bishop-Phelps-Bollobás properties. J Math Anal Appl. 2018;468(1):304-323. · Zbl 1412.46022
[30] Dantas, S, Kim, SK, Lee, HJ, et al. Strong subdifferentiability and local Bishop-Phelps-Bollobás properties. Rev Real Acad Cienc Exactas Fis Nat A Mat. 2020;114(2):16. Article ID: 47. · Zbl 1440.46008
[31] Franchetti, C, Payá, R.Banach spaces with strongly subdifferentiable norm. Boll Uni Mat Ital. 1993;7(1):45-70. · Zbl 0779.46021
[32] Rosenthal, H. The lie algebra of a Banach space, Banach spaces (Columbia, Mo, 1984). Berlin: Springer; 1985. p. 129-157. (Lecture Notes in Math; 1166). · Zbl 0613.46016
[33] Acosta, M, Ruiz Galán, M.A version of James’ theorem for numerical radius. Bull Lond Math Soc. 1999;31(1):67-74. · Zbl 0922.47004
[34] Holub, JR.Reflexivity of \(L(E,F) \). Proc Amer Math Soc. 1973;39(1):175-177. · Zbl 0262.46015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.