×

Investigation of different influence functions in peridynamics. (Russian. English summary) Zbl 07850307

Summary: Peridynamics is a non-local numerical method for solving fracture problems based on integral equations. It is assumed that particles in a continuum are endowed with volume and interact with each other at a finite distance, as in molecular dynamics. The influence function in peridynamic models is used to limit the force acting on a particle and to adjust the bond strength depending on the distance between the particles. It satisfies certain continuity conditions and describes the behavior of non-local interaction. The article investigates various types of influence function in peridynamic models on the example of three-dimensional problems of elasticity and fracture. In the course of the work done, the bond-based and state-based fracture models used in the Sandia Laboratory are described, 6 types of influence functions for the bond-based model and 2 types of functions for the state-based model are presented, and the corresponding formulas for calculating the stiffness of the bond are obtained. For testing, we used the problem of propagation of a spherically symmetric elastic wave, which has an analytical solution, and a qualitative problem of destruction of a brittle disk under the action of a spherical impactor. Graphs of radial displacement are given, raster images of simulation results are shown.

MSC:

74B05 Classical linear elasticity
74R10 Brittle fracture

Software:

LAMMPS

References:

[1] F. Bobaru, P.H. Geubelle, J.T. Foster, S. A. Silling, Handbook of peridynamic modeling, Taylor & Francis, NY, 2016, 586 pp. · Zbl 1351.74001
[2] E. Madenci, E. Oterkus, Peridynamic theory and its applications, New York: Springer, 2014, 297 pp. · Zbl 1295.74001
[3] D. A. Shishkanov, M. V. Vetchinnikov, Yu. N. Deryugin, “Peridynamics method for problems solve of solids destruction.”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 24:4 (2022), 452-468 (In Russ.) · Zbl 07746590 · doi:10.15507/2079-6900.24.202204.452-468
[4] V. N. Sofronov, M. V. Vetchinnikov, M. A. Dyemina, “Use of Hamiltonian dynamics methods in computational continuum mechanics”, Zhurnal VANT, 2020, no. 4, 17 pp. (In Russ.)
[5] M.L. Parks, P. Seleson, S. J. Plimpton, R.B. Lehoucq , S.A. Siling, Peridynamics with LAMMPS: A User Guide v0.2 Beta, New Mexico, 2008, 28 pp.
[6] A. N. Anisimov, S. A. Grushin, B. L. Voronin, S. V. Kopkin, A. M. Yerofeev, D. A. Demin, M. A. Demina, M. V. Zdorova, M. V. Vetchinnikov, N. S. Ericheva, N. O. Kovalenko, I. A. Kryuchkov, A. G. Kechin, V. A. Degtyarev, Certificate of state registration of the computer program No. 2010614974. A complex of molecular dynamic modeling programs (MoDyS), 2010 (In Russ.)
[7] M. L. Parks, Lehoucq, R. B., S. J. Plimpton, S. A. Silling, “Implementing peridynamics within a molecular dynamics code”, Computer Physics Communications, 179 (2008), 777-783 · Zbl 1197.82014 · doi:10.1016/j.cpc.2008.06.011
[8] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, Journal of Mechanics and Physics of Solids, 48:1 (2000), 175-209 · Zbl 0970.74030 · doi:10.1016/S0022-5096(99)00029-0
[9] S. A. Silling, E. Askari, “A meshfree method based on the peridynamic model of solid mechanics”, Computers & Structures, 93:17 (2005), 1526-1535 · doi:10.1016/j.compstruc.2004.11.026
[10] S. A. Silling, M. Zimmermann, R. Abeyaratne, “Deformation of a peridynamic bar”, Journal of Elasticity, 73 (2003), 173-190 · Zbl 1061.74031 · doi:10.1023/B:ELAS.0000029931.03844.4f
[11] Z. Chen, J. W. Ju, G. Su, X. Huang, S. Li., L. Zhai, “Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials”, Engineering Fracture Mechanics, 216 (2019) · doi:10.1016/j.engfracmech.2019.106498
[12] S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, “Peridynamic states and constitutive modeling”, Journal of Elasticity, 88 (2007), 151-184 · Zbl 1120.74003 · doi:10.1007/s10659-007-9125-1
[13] A. J. Mitchell, S. A. Silling, D. J. Littlewood, “A position-aware linear solid constitutive model for peridynamics”, Journal of Mechanics of Materials and Structures, 20:5 (2015), 539-557 · doi:10.2140/jomms.2015.10.539
[14] J. A. Mitchell, “On the ‘DSF’ and the ‘dreaded surface effect’, studies of presentation at Workshop on Nonlocal Damage and Failure”, Sandia National Laboratories, 2013
[15] S. A. Silling, R. B. Lehoucq, “Convergence of Peridynamics to Classical Elasticity Theory”, Journal of Elasticity, 93 (2008), 13-37 · Zbl 1159.74316 · doi:10.1007/s10659-008-9163-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.