×

Multitriangulations and tropical Pfaffians. (English) Zbl 07849887

Summary: The \(k\)-associahedron \(\mathcal{A}\mathit{ss}_k(n)\) is the simplicial complex of \((k+1)\)-crossing-free subgraphs of the complete graph with vertices on a circle. Its facets are called \(k\)-triangulations. We explore the connection of \(\mathcal{A}\mathit{ss}_k(n)\) with the Pfaffian variety \(\mathcal{P}\mathit{f}_k(n)\) of antisymmetric matrices of rank \(\leq 2k\). First, we characterize the Gröbner cone \(Grob_k(n)\) for which the initial ideal of \(I(\mathcal{P}\mathit{f}_k(n))\) equals the Stanley-Reisner ideal of \(\mathcal{A}\mathit{ss}_k(n)\) (that is, the monomial ideal generated by \((k+1)\)-crossings). We then look at the tropicalization of \(\mathcal{P}\mathit{f}_k(n)\) and show that \(\mathcal{A}\mathit{ss}_k(n)\) embeds naturally as the intersection of \(trop(\mathcal{P}\mathit{f}_k(n))\) and \(Grob_k(n)\), and that it is contained in the totally positive part \(trop^+(\mathcal{P}\mathit{f}_k(n))\) of it. We show that for \(k=1\) and for each triangulation \(T\) of the \(n\)-gon, the projection of this embedding of \(\mathcal{A}\mathit{ss}_k(n)\) to the \(n-3\) coordinates corresponding to diagonals in \(T\) gives a complete polytopal fan, realizing the associahedron. This fan is linearly isomorphic to the \(g\)-vector fan of the cluster algebra of type \(A\), shown to be polytopal by Hohlweg, Pilaud, and Stella in 2018.

MSC:

14T15 Combinatorial aspects of tropical varieties
05E45 Combinatorial aspects of simplicial complexes
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)

Software:

Gfan

References:

[1] Bernstein, D. I., Completion of tree metrics and rank 2 matrices, Linear Algebra Appl., 533 (2017), pp. 1-13. · Zbl 1391.14119
[2] Bergeron, N., Ceballos, C., and Labbé, J.-P., Fan realizations of subword complexes and multi-associahedra via Gale duality, Discrete Comput. Geom., 54 (2015), pp. 195-231. · Zbl 1327.52014
[3] Bogart, T., Jensen, A. N., Speyer, D., Sturmfels, B., and Thomas, R. R., Computing tropical varieties, J. Symbolic Comput., 42 (2007), pp. 54-73, doi:10.1016/j.jsc.2006.02.004. · Zbl 1121.14051
[4] Bokowski, J. and Pilaud, V., On symmetric realizations of the simplicial complex of 3-crossing-free sets of diagonals of the octagon, in Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG2009), , University of British Columbia, Canada, 2009, pp. 41-44.
[5] Brandenburg, M.-C., Loho, G., and Sinn, R., Tropical positivity and determinantal varieties, Algebr. Comb., 6 (2023), pp. 999-1040. · Zbl 1537.14087
[6] Buneman, P., A note on metric properties of trees, J. Combin. Theory Ser. B, 17 (1974), pp. 48-50. · Zbl 0286.05102
[7] Cayley, A., On the theory of permutants, Cambridge Dublin Math. J., VII (1852), pp. 40-51.
[8] Ceballos, C., Santos, F., and Ziegler, G. M., Many non-equivalent realizations of the associahedron, Combinatorica, 35 (2015), pp. 513-551, doi:10.1007/s00493-014-2959-9. · Zbl 1389.52013
[9] Chan, M., Jensen, A. N., and Rubei, E., The \(4\times 4\) minors of a \(5\times n\) matrix are a tropical basis, Linear Algebra Appl., 435 (2009), pp. 1598-1611. · Zbl 1231.14053
[10] Chapoton, F., Fomin, S., and Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull., 45 (2002), pp. 537-566. · Zbl 1018.52007
[11] Ceballos, C., Labbé, J.-P., and Stump, C., Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebraic Combin., 39 (2014), pp. 17-51. · Zbl 1286.05180
[12] Cox, D. A., Little, J., and O’Shea, D.Using Algebraic Geometry, 2nd ed., Grad. Texts Math. 185, Springer, New York, 2005. · Zbl 1079.13017
[13] Crespo Ruiz, L. and Santos, F., Bar-and-joint rigidity on the moment curve coincides with cofactor rigidity on a conic, Combin. Theory, 3 (2023), 15, doi:10.5070/C63160428. · Zbl 1511.52020
[14] Crespo Ruiz, L. and Santos, F., Realizations of Multiassociahedra via Rigidity, preprint, arXiv:2212.14265, 2022.
[15] Dress, A., Grünewald, S., Jonsson, J., and Moulton, V., The Simplicial Complex \(\Delta_{n,k}\) of \(k\)-Compatible Line Arrangements in the Hyperbolic Plane. Part 1: The Structure of \(\Delta_{n,k}\), unpublished.
[16] Develin, M., Santos, F., and Sturmfels, B., On the rank of a tropical matrix, in Combinatorial and Computational Geometry, Mathematical Sciences Research Institute Publications 52, Goodman, J. E., Pach, J., and Welzl, E., eds., Cambridge University Press, Cambridge, 2005, pp. 213-242. · Zbl 1095.15001
[17] Dress, A., Koolen, J. H., and Moulton, V., On line arrangements in the hyperbolic plane, European J. Combin., 23 (2002), pp. 549-557. · Zbl 1023.52007
[18] Fomin, S. and Thurston, D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths, in Memoirs of the American Mathematical Society 255, American Mathematical Society, Providence, RI, 2018. · Zbl 07000309
[19] Fomin, S. and Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143 (2007), pp. 112-164. · Zbl 1127.16023
[20] Herzog, J. and Trung, N. V., Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math., 96 (1992), pp. 1-37. · Zbl 0778.13022
[21] Hohlweg, C. and Lange, C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37 (2007), pp. 517-543. · Zbl 1125.52011
[22] Hohlweg, C., Lange, C., and Thomas, H., Permutahedra and generalized associahedra, Adv. Math., 226 (2011), pp. 608-640. · Zbl 1233.20035
[23] Hohlweg, C., Pilaud, V., and Stella, S., Polytopal realizations of finite type \(\textbf{g} \)-vector fans, Adv. Math., 328 (2018), pp. 713-749, doi:10.1016/j.aim.2018.01.019. · Zbl 1382.05075
[24] Hohlweg, C., Pilaud, V., and Stella, S., Universal associahedra, Sém Lothar Combin., 80B (2018), 15, https://www.mat.univie.ac.at/∼slc/wpapers/FPSAC2018. · Zbl 1420.51016
[25] Jensen, A. N., Gfan - A Software System for Gröbner Fans and Tropical Varieties, https://users-math.au.dk/jensen/software/gfan/gfan.html.
[26] Jonsson, J., Generalized Triangulations of the \(n\)-gon, unpublished.
[27] Jonsson, J. and Welker, W., A spherical initial ideal for Pfaffians, Illinois J. Math., 51 (2007), pp. 1397-1407. · Zbl 1148.13012
[28] Kalai, G., Hyperconnectivity of graphs, Graphs Combin., 1 (1985), pp. 65-79. · Zbl 0609.05051
[29] Király, F. J., Rosen, Z., and Theran, L., Algebraic Matroids with Graph Symmetry, preprint, arXiv:1312.3777 [math.CO], 2013.
[30] Knutson, A. and Miller, E., Subword complexes in Coxeter groups, Adv. Math., 184 (2004), pp. 161-176. · Zbl 1069.20026
[31] Maclagan, D. and Sturmfels, B., Introduction to Tropical Geometry, , American Mathematical Society, Providence, RI, 2015. · Zbl 1321.14048
[32] Manneville, T., Fan realizations for some 2-associahedra, Exp. Math., 27 (2017), pp. 377-394. · Zbl 1406.52026
[33] Nakamigawa, T., A generalization of diagonal flips in a convex polygon, Theoret. Comput. Sci., 235 (2000), pp. 271-282. · Zbl 0938.68880
[34] Pachter, L. and Sturmfels, B., Algebraic Statistics for Computational Biology, Cambridge University Press, Cambridge, 2005, doi:10.1017/CBO9780511610684. · Zbl 1108.62118
[35] Pilaud, V. and Pocchiola, M., Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., 41 (2012), pp. 142-191. · Zbl 1247.52012
[36] Pilaud, V. and Santos, F., Multitriangulations as complexes of star polygons, Discrete Comput. Geom., 41 (2009), pp. 284-317. · Zbl 1177.52007
[37] Pilaud, V. and Santos, F., The brick polytope of a sorting network, European J. Combin., 33 (2012), pp. 632-662. · Zbl 1239.52026
[38] Pilaud, V. and Stump, C., Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., 276 (2015), pp. 1-61. · Zbl 1405.05196
[39] Rosen, Z., Computing Algebraic Matroids, https://arxiv.org/abs/1403.8148, 2014.
[40] Rosen, Z., Sidman, J., and Theran, L., Algebraic matroids in action, Amer. Math. Monthly, 127 (2020), pp. 199-216, doi:10.1080/00029890.2020.1689781. · Zbl 1433.05067
[41] Shitov, Y., Example of a 6-by-6 matrix with different tropical and Kapranov ranks, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 5 (2011), pp. 58-61 (in Russian); https://arxiv.org/abs/1012.5507v1 (in English).
[42] Shitov, Y., When do the \(r\)-by-\(r\) minors of a matrix form a tropical basis?, J. Combin. Theory Ser. A, 120 (2013), pp. 1166-1201. · Zbl 1300.14065
[43] Shitov, Y., A counterexample on tropical linear spaces, Linear Algebra Appl., 511 (2016), pp. 19-21. · Zbl 1362.14067
[44] Speyer, D. and Sturmfels, B., The tropical Grassmannian, Adv. Geom., 4 (2004), pp. 389-411. · Zbl 1065.14071
[45] Speyer, D. and Williams, L., The tropical totally positive Grassmannian, J. Algebraic Combin., 22 (2005), pp. 189-210, doi:10.1007/s10801-005-2513-3. · Zbl 1094.14048
[46] Speyer, D. and Williams, L., The positive Dressian equals the positive tropical Grassmannian, Trans. Amer. Math. Soc., 8 (2021), pp. 330-353, doi:10.1090/btran/67. · Zbl 1462.05359
[47] Stella, S., Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin., 38 (2013), pp. 121-158. · Zbl 1268.05242
[48] Stump, C., A new perspective on \(k\)-triangulations, J. Combin. Theory Ser. A, 118 (2011), pp. 1794-1800. · Zbl 1228.05296
[49] Sturmfels, B. and Sullivant, S., Combinatorial secant varieties, Pure Appl. Math. Q., 2 (2006), pp. 867-891, doi:10.4310/PAMQ.2006.v2.n3.a12. · Zbl 1107.14045
[50] Zwick, D., Symmetric Kapranov and Symmetric Tropical Ranks, preprint, doi:10.48550/arXiv.2112.14945, 2021.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.