×

Leclerc’s conjecture on a cluster structure for type A Richardson varieties. (English) Zbl 07849776

Summary: Leclerc [32] constructed a conjectural cluster structure on Richardson varieties in simply laced types using cluster categories. We show that in type A, his conjectural cluster structure is in fact a cluster structure. We do this by comparing Leclerc’s construction with another cluster structure on type A Richardson varieties due to Ingermanson [27]. Ingermanson’s construction uses the combinatorics of wiring diagrams and the Deodhar stratification. Though the two cluster structures are defined very differently, we show that the quivers coincide and clusters are related by the twist map for Richardson varieties, recently defined by Galashin-Lam [21].

MSC:

13F60 Cluster algebras
14M15 Grassmannians, Schubert varieties, flag manifolds
05E40 Combinatorial aspects of commutative algebra

References:

[1] Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1-52, 2005 · Zbl 1135.16013
[2] Borovik, A. V.; Gelfand, I. M.; White, N., Coxeter Matroids, Progress in Mathematics, vol. 216, 2003, Birkh��user Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1050.52005
[3] Buan, A. B.; Iyama, O.; Reiten, I.; Scott, J., Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math., 145, 4, 1035-1079, 2009 · Zbl 1181.18006
[4] R. Casals, P. Galashin, M. Gorsky, L. Shen, M. Sherman-Bennett, J. Simental, in preparation.
[5] Casals, R.; Gorsky, E.; Gorsky, M.; Le, I.; Shen, L.; Simental, J., Cluster structures on braid varieties, 2022
[6] Casals, R.; Gorsky, E.; Gorsky, M.; Simental, J., Algebraic weaves and braid varieties, 2020
[7] Cao, P.; Keller, B., On Leclerc’s conjectural cluster structures for open Richardson varieties, 2022
[8] Casals, R.; Le, I.; Sherman-Bennett, M.; Weng, D., Demazure weaves for reduced plabic graphs (with a proof that Muller-Speyer twist is Donaldson-Thomas), 2023
[9] Deodhar, V. V., On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79, 3, 499-511, 1985 · Zbl 0563.14023
[10] Fock, V.; Goncharov, A., Cluster \(\mathcal{X} \)-varieties, amalgamation, and Poisson-Lie groups, (Algebraic Geometry and Number Theory. Algebraic Geometry and Number Theory, Progr. Math., vol. 253, 2006, Birkhäuser Boston: Birkhäuser Boston Boston, MA), 27-68 · Zbl 1162.22014
[11] Fomin, S.; Pylyavskyy, P.; Shustin, E.; Thurston, D., Morsifications and mutations, J. Lond. Math. Soc. (2), 105, 4, 2478-2554, 2022 · Zbl 1520.13037
[12] Fraser, C., Quasi-homomorphisms of cluster algebras, Adv. Appl. Math., 81, 40-77, 2016 · Zbl 1375.13031
[13] Fraser, C.; Sherman-Bennett, M., Positroid cluster structures from relabeled plabic graphs, Algebraic Combin., 5, 3, 469-513, 2022 · Zbl 1502.14141
[14] Fulton, W., Young Tableaux, London Mathematical Society Student Texts, vol. 35, 1997, Cambridge University Press: Cambridge University Press Cambridge, With applications to representation theory and geometry · Zbl 0878.14034
[15] Fomin, S.; Williams, L.; Zelevinsky, A., Introduction to Cluster Algebras. Chapters 1-3, 2016
[16] Fomin, S.; Zelevinsky, A., Double Bruhat cells and total positivity, J. Am. Math. Soc., 12, 2, 335-380, 1999 · Zbl 0913.22011
[17] Fomin, S.; Zelevinsky, A., Cluster algebras. I. Foundations, J. Am. Math. Soc., 15, 497-529, 2002 · Zbl 1021.16017
[18] Golden, J.; Goncharov, A.; Spradlin, M.; Vergu, C.; Volovich, A., Motivic amplitudes and cluster coordinates, J. High Energy Phys., 2014, 91, 2014
[19] Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras, J. Am. Math. Soc., 31, 497-608, 2018 · Zbl 1446.13015
[20] Galashin, P.; Lam, T., Positroids, knots, and \(q, t\)-Catalan numbers, 2020 · Zbl 1503.14044
[21] Galashin, P.; Lam, T., The twist for Richardson varieties, 2022
[22] Galashin, P.; Lam, T., Positroid varieties and cluster algebras, Ann. Sci. Éc. Norm. Supér. (4), 56, 3, 859-884, 2023 · Zbl 1541.13023
[23] Geiss, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 329-433, 2011 · Zbl 1232.17035
[24] Galashin, P.; Lam, T.; Sherman-Bennett, M., Braid variety cluster structures, II: general type
[25] Galashin, P.; Lam, T.; Sherman-Bennett, M.; Speyer, D. E., Braid variety cluster structures, I: 3D plabic graphs, 2022
[26] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167, 2010, American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1217.13001
[27] Ingermanson, G., Cluster algebras of open Richardson varieties, 2019, PhD thesis
[28] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 2, 165-184, 1979 · Zbl 0499.20035
[29] Kazhdan, D.; Lusztig, G., Schubert varieties and Poincaré duality, (Geometry of the Laplace Operator. Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979. Geometry of the Laplace Operator. Geometry of the Laplace Operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., vol. XXXVI, 1980, Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 185-203 · Zbl 0461.14015
[30] Kassel, C.; Lascoux, A.; Reutenauer, C., Factorizations in Schubert cells, Adv. Math., 150, 1, 1-35, 2000 · Zbl 0981.15009
[31] Knutson, A.; Lam, T.; Speyer, D. E., Positroid varieties: juggling and geometry, Compos. Math., 149, 1710-1752, 2013 · Zbl 1330.14086
[32] Leclerc, B., Cluster structures on strata of flag varieties, Adv. Math., 300, 190-228, 2016 · Zbl 1375.13036
[33] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Am. Math. Soc., 2, 447-498, 1990 · Zbl 0703.17008
[34] Lusztig, G., Total positivity in reductive groups, (Lie Theory and Geometry. Lie Theory and Geometry, Progr. Math., vol. 123, 1994, Birkhäuser Boston: Birkhäuser Boston Boston, MA), 531-568 · Zbl 0845.20034
[35] Ménard, E., Cluster algebras associated with open Richardson varieties: an algorithm to compute initial seeds, 2022
[36] Marsh, B. J.; Rietsch, K., Parametrizations of flag varieties, Represent. Theory, 8, 212-242, 2004 · Zbl 1053.14057
[37] Muller, G.; Speyer, D. E., The twist for positroid varieties, Proc. Lond. Math. Soc., 115, 1014-1071, 2017 · Zbl 1408.14154
[38] Muller, G., Locally acyclic cluster algebras, Adv. Math., 233, 207-247, 2013 · Zbl 1279.13032
[39] Postnikov, A., Total positivity, Grassmannians, and networks, 2006
[40] Pressland, M., Quasi-coincidence of cluster structures on positroid varieties, 2023
[41] Rietsch, K., An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra, 213, 144-154, 1999 · Zbl 0920.20041
[42] Scott, J. S., Grassmannians and cluster algebras, Proc. Lond. Math. Soc., 92, 345-380, 2006 · Zbl 1088.22009
[43] Serhiyenko, K.; Sherman-Bennett, M.; Williams, L., Cluster structures in Schubert varieties in the Grassmannian, Proc. Lond. Math. Soc. (3), 119, 6, 1694-1744, 2019 · Zbl 1439.05227
[44] Shende, V.; Treumann, D.; Williams, H.; Zaslow, E., Cluster varieties from Legendrian knots, Duke Math. J., 168, 15, 2801-2871, 2019 · Zbl 1475.53094
[45] Zhou, Y., Cluster structures and subfans in scattering diagrams, SIGMA, 16, Article 013 pp., 2020 · Zbl 1439.13059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.