×

Hybrid Nanofluid flow induced by an exponentially shrinking sheet. (English) Zbl 07848616

Summary: The flow and heat transfer induced by an exponentially shrinking sheet with hybrid nanoparticles is investigated in this paper. The alumina (\(\mathrm{Al_2O}_3\)) and copper (Cu) nanoparticles are suspended in water to form \(\mathrm{Al_2O}_3\)-Cu/water hybrid nanofluid. In addition, the effects of magnetohydrodynamic (MHD) and radiation are also taken into account. The similarity equations are gained from the governing equations using similarity transformation, and their solutions are obtained by the aid of the bvp4c solver available in Matlab software. Results elucidate that dual solutions exist for suction strength \(S > S_c\) and shrinking strength \(\lambda > \lambda_c\). The critical values \(S_c\) and \(\lambda_c\) for the existence of the dual solutions decrease with the rising of the solid volume fractions of Cu, \(\varphi_2\) and the magnetic parameter, \(M\). Besides, the skin friction and the heat transfer rate increase with the increasing of \(\varphi_2\) and \(M\) for the upper branch solutions. The increasing of radiation, \(R\) leads to reduce the surface temperature gradient which implies to the reduction of the heat transfer rate for both branches when \(\lambda < 0\) (shrinking sheet). The stability of the dual solutions is determined by the temporal stability analysis, and it is discovered that only one of them is stable and physically applicable.

MSC:

76Dxx Incompressible viscous fluids
80Axx Thermodynamics and heat transfer
76Rxx Diffusion and convection

Software:

Matlab; bvp4c
Full Text: DOI

References:

[1] Choi, S. U.S.; Eastman, J. A., Enhancing thermal conductivity of fluids with nanoparticles, (Proc. 1995 ASME Int. Mech. Eng. Congr. Expo.. Proc. 1995 ASME Int. Mech. Eng. Congr. Expo., San Francisco, CA, 1995)
[2] Das, S. K.; Choi, S. U.S.; Yu, W.; Pradeep, T., Nanofluids: Science and Technology, 2007, Wiley-Interscience: Wiley-Interscience New Jersey
[3] Minkowycz, W. J.; Sparrow, E. M.; Abraham, J. P., Nanoparticle Heat Transfer and Fluid Flow, 2013, CRC Press, Taylor & Fracis Group: CRC Press, Taylor & Fracis Group New York
[4] Shenoy, A.; Sheremet, M.; Pop, I., Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids, 2016, CRC Press, Taylor and Francis Group: CRC Press, Taylor and Francis Group New York
[5] Nield, D. A.; Bejan, A., Convection in Porous Media, Fifth, 2017, Springer International Publishing: Springer International Publishing New York · Zbl 1375.76004
[6] Minea, A. A., Advances in New Heat Transfer Fluids: From Numerical to Experimental Techniques, 2017, CRC Press, Taylor & Fracis Group: CRC Press, Taylor & Fracis Group New York
[7] Buongiorno, J.; Venerus, D. C.; Prabhat, N.; McKrell, T.; Townsend, J.; Christianson, R.; Tolmachev, Y. V.; Keblinski, P.; Hu, L. W.; Alvarado, J. L.; Bang, I. C.; Bishnoi, S. W.; Bonetti, M.; Botz, F.; Cecere, A.; Chang, Y.; Chen, G.; Chen, H.; Chung, S. J.; Chyu, M. K.; Das, S. K.; Di Paola, R.; Ding, Y.; Dubois, F.; Dzido, G.; Eapen, J.; Escher, W.; Funfschilling, D.; Galand, Q.; Gao, J.; Gharagozloo, P. E.; Goodson, K. E.; Gutierrez, J. G.; Hong, H.; Horton, M.; Hwang, K. S.; Iorio, C. S.; Jang, S. P.; Jarzebski, A. B.; Jiang, Y.; Jin, L.; Kabelac, S.; Kamath, A.; Kedzierski, M. A.; Kieng, L. G.; Kim, C.; Kim, J. H.; Kim, S.; Lee, S. H.; Leong, K. C.; Manna, I.; Michel, B.; Ni, R.; Patel, H. E.; Philip, J.; Poulikakos, D.; Reynaud, C.; Savino, R.; Singh, P. K.; Song, P.; Sundararajan, T.; Timofeeva, E.; Tritcak, T.; Turanov, A. N.; Van Vaerenbergh, S.; Wen, D.; Witharana, S.; Yang, C.; Yeh, W. H.; Zhao, X. Z.; Zhou, S. Q., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, Article 094312 pp., 2009
[8] Fan, J.; Wang, L., Review of heat conduction in nanofluids, J. Heat Transf., 133, Article 040801 pp., 2011
[9] Kakaç, S.; Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52, 3187-3196, 2009 · Zbl 1167.80338
[10] Manca, O.; Jaluria, Y.; Poulikakos, D., Heat transfer in nanofluids, Adv. Mech. Eng., 2, Article 380826 pp., 2010
[11] Sheikholeslami, M.; Ganji, D. D., Nanofluid convective heat transfer using semi analytical and numerical approaches: a review, J. Taiwan Inst. Chem. Eng., 65, 43-77, 2016
[12] Myers, T. G.; Ribera, H.; Cregan, V., Does mathematics contribute to the nanofluid debate?, Int. J. Heat Mass Transf., 111, 279-288, 2017
[13] Mahian, O.; Kianifar, A.; Kalogirou, S. A.; Pop, I.; Wongwises, S., A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf., 57, 582-594, 2013
[14] Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J. S.; Siavashi, M.; Taylor, R. A.; Niazmand, H.; Wongwises, S.; Hayat, T.; Kolanjiyil, A.; Kasaeian, A.; Pop, I., Recent advances in modeling and simulation of nanofluid flows — part I : fundamentals and theory, Phys. Rep., 790, 1-48, 2019
[15] Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J. S.; Taylor, R. A.; Abu-nada, E.; Rashidi, S.; Niazmand, H.; Wongwises, S.; Hayat, T.; Kasaeian, A.; Pop, I., Recent advances in modeling and simulation of nanofluid flows — part II : applications, Phys. Rep., 791, 1-59, 2019
[16] Qayyum, S.; Khan, M. I.; Hayat, T.; Alsaedi, A., A framework for nonlinear thermal radiation and homogeneous-heterogeneous reactions flow based on silver-water and copper-water nanoparticles: a numerical model for probable error, Results Phys., 7, 1907-1914, 2017
[17] Khan, M. W.A.; Khan, M. I.; Hayat, T.; Alsaedi, A., Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation, Phys. B Condens. Matter., 534, 113-119, 2018
[18] Hayat, T.; Khan, M. I.; Farooq, M.; Alsaedi, A.; Yasmeen, T., Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation, Int. J. Heat Mass Transf., 106, 810-815, 2017
[19] Hayat, T.; Khan, M. I.; Waqas, M.; Alsaedi, A.; Farooq, M., Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon-water nanofluid, Comput. Methods Appl. Mech. Eng., 315, 1011-1024, 2017 · Zbl 1439.65083
[20] Hayat, T.; Khan, M. I.; Qayyum, S.; Alsaedi, A., Entropy generation in flow with silver and copper nanoparticles, Colloids Surf. A, 539, 335-346, 2018
[21] Hayat, T.; Waqas, M.; Khan, M. I.; Alsaedi, A., Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects, Int. J. Heat Mass Transf., 102, 1123-1129, 2016
[22] Hayat, T.; Qayyum, S.; Khan, M. I.; Alsaedi, A., Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids, 30, Article 017101 pp., 2018
[23] Hayat, T.; Khan, M. I.; Waqas, M.; Alsaedi, A., Mathematical modeling of non-Newtonian fluid with chemical aspects: a new formulation and results by numerical technique, Colloids Surf. A, 518, 263-272, 2017
[24] Hayat, T.; Khan, M. I.; Farooq, M.; Alsaedi, A.; Khan, M. I., Thermally stratified stretching flow with Cattaneo-Christov heat flux, Int. J. Heat Mass Transf., 106, 289-294, 2017
[25] Hayat, T.; Khan, M. I.; Waqas, M.; Alsaedi, A.; Khan, M. I., Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment, Int. J. Hydrog. Energy, 42, 16821-16833, 2017
[26] Hayat, T.; Khan, M. I.; Qayyum, S.; Alsaedi, A.; Khan, M. I., New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials, Phys. Lett. Sect. A, 382, 749-760, 2018
[27] Hayat, T.; Khan, M. I.; Farooq, M.; Yasmeen, T.; Alsaedi, A., Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions, J. Mol. Liq., 220, 49-55, 2016
[28] Hayat, T.; Khan, M. I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T., Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transf., 99, 702-710, 2016
[29] Hayat, T.; Ahmad, S.; Khan, M. I.; Alsaedi, A., Simulation of ferromagnetic nanomaterial flow of Maxwell fluid, Results Phys., 8, 34-40, 2018
[30] Khan, M. I.; Khan, M. I.; Waqas, M.; Hayat, T.; Alsaedi, A., Chemically reactive flow of Maxwell liquid due to variable thicked surface, Int. Commun. Heat Mass Transf., 86, 231-238, 2017
[31] Khan, M. I.; Hayat, T.; Khan, M. I.; Alsaedi, A., A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating, Int. J. Heat Mass Transf., 113, 310-317, 2017
[32] Khan, M. I.; Waqas, M.; Hayat, T.; Alsaedi, A., A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Interface Sci., 498, 85-90, 2017
[33] Khan, M. I.; Hayat, T.; Khan, M. I.; Alsaedi, A., Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid, Int. Commun. Heat Mass Transf., 91, 216-224, 2018
[34] Khan, M. I.; Waqas, M.; Hayat, T.; Khan, M. I.; Alsaedi, A., Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field, Int. J. Mech. Sci., 131-132, 426-434, 2017
[35] Farooq, M.; Khan, M. I.; Waqas, M.; Hayat, T.; Alsaedi, A.; Khan, M. I., MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, J. Mol. Liq., 221, 1097-1103, 2016
[36] Hsiao, K. L., Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet, Appl. Therm. Eng., 98, 850-861, 2016
[37] Hsiao, K. L., Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects, Appl. Therm. Eng., 112, 1281-1288, 2017
[38] Hsiao, K. L., To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method, Energy, 130, 486-499, 2017
[39] Hsiao, K. L., Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, Int. J. Heat Mass Transf., 112, 983-990, 2017
[40] Buongiorno, J., Convective transport in nanofluids, J. Heat Transf., 128, 240-250, 2006
[41] Tiwari, R. K.; Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transf., 50, 2002-2018, 2007 · Zbl 1124.80371
[42] Sarkar, J.; Ghosh, P.; Adil, A., A review on hybrid nanofluids: recent research, development and applications, Renew. Sustain. Energy Rev., 43, 164-177, 2015
[43] Hemmat Esfe, M.; Alirezaie, A.; Rejvani, M., An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management, Appl. Therm. Eng., 111, 1202-1210, 2017
[44] Sundar, L. S.; Sharma, K. V.; Singh, M. K.; Sousa, A. C.M., Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – a review, Renew. Sustain. Energy Rev., 68, 185-198, 2017
[45] Babu, J. A.R.; Kumar, K. K.; Rao, S. S., State-of-art review on hybrid nanofluids, Renew. Sustain. Energy Rev., 77, 551-565, 2017
[46] Sidik, N. A.C.; Adamu, I. M.; Jamil, M. M.; Kefayati, G. H.R.; Mamat, R.; Najafi, G., Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review, Int. Commun. Heat Mass Transf., 78, 68-79, 2016
[47] Akilu, S.; Sharma, K. V.; Baheta, A. T.; Mamat, R., A review of thermophysical properties of water based composite nanofluids, Renew. Sustain. Energy Rev., 66, 654-678, 2016
[48] Leong, K. Y.; Ku Ahmad, K. Z.; Ong, H. C.; Ghazali, M. J.; Baharum, A., Synthesis and thermal conductivity characteristic of hybrid nanofluids – a review, Renew. Sustain. Energy Rev., 75, 868-878, 2017
[49] Ahmadi, M. H.; Mirlohi, A.; Alhuyi Nazari, M.; Ghasempour, R., A review of thermal conductivity of various nanofluids, J. Mol. Liq., 265, 181-188, 2018
[50] Huminic, G.; Huminic, A., Hybrid nanofluids for heat transfer applications – a state-of-the-art review, Int. J. Heat Mass Transf., 125, 82-103, 2018
[51] Devi, S. P.A.; Devi, S. S.U., Numerical investigation of hydromagnetic hybrid Cu-Al_2O_3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlinear Sci. Numer. Simul., 17, 249-257, 2016
[52] Suresh, S.; Venkitaraj, K. P.; Selvakumar, P.; Chandrasekar, M., Synthesis of Al_2O_3-Cu/water hybrid nanofluids using two step method and its thermo physical properties, Colloids Surf. A, 388, 41-48, 2011
[53] Devi, S. S.U.; Devi, S. P.A., Numerical investigation of three-dimensional hybrid Cu-Al_2O_3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys., 94, 490-496, 2016
[54] Waini, I.; Ishak, A.; Pop, I., Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid, Int. J. Heat Mass Transf., 136, 288-297, 2019
[55] Waini, I.; Ishak, A.; Pop, I., Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid, Phys. Scr., 94, Article 105219 pp., 2019
[56] Waini, I.; Ishak, A.; Pop, I., Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface, Int. J. Numer. Methods Heat Fluid Flow, 29, 3110-3127, 2019
[57] Waini, I.; Ishak, A.; Pop, I., Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux, Int. J. Numer. Methods Heat Fluid Flow, 29, 12, 4875-4894, 2019 · doi:10.1108/HFF-04-2019-0277
[58] Khashi’ie, N. S.; Arifin, N. M.; Nazar, R.; Hafidzuddin, E. H.; Wahi, N.; Pop, I., Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating, Chin. J. Phys., 2019 · Zbl 07830267 · doi:10.1016/j.cjph.2019.11.008
[59] Hayat, T.; Nadeem, S., Heat transfer enhancement with Ag-CuO/water hybrid nanofluid, Results Phys, 7, 2317-2324, 2017
[60] Hayat, T.; Nadeem, S.; Khan, A. U., Rotating flow of Ag-CuO/H_2O hybrid nanofluid with radiation and partial slip boundary effects, Eur. Phys. J. E., 41, 75, 2018
[61] Jamshed, W.; Aziz, A., Cattaneo-Christov based study of TiO_2-CuO/Eg Casson hybrid nanofluid flow over a stretching surface with entropy generation, Appl. Nanosci., 8, 685-698, 2018
[62] Yousefi, M.; Dinarvand, S.; Eftekhari Yazdi, M.; Pop, I., Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder, Int. J. Numer. Methods Heat Fluid Flow, 28, 1716-1735, 2018
[63] Rostami, M. N.; Dinarvand, S.; Pop, I., Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid, Chin. J. Phys., 56, 2465-2478, 2018
[64] Dinarvand, S., Nodal/saddle stagnation-point boundary layer flow of CuO-Ag/water hybrid nanofluid: a novel hybridity model, Microsyst. Technol., 1-15, 2019
[65] Subhani, M.; Nadeem, S., Numerical analysis of micropolar hybrid nanofluid, Appl. Nanosci., 9, 447-459, 2019
[66] Ahmad Khan, S.; Khan, M. I.; Hayat, T.; Faisal Javed, M.; Alsaedi, A., Mixed convective non-linear radiative flow with TiO_2-Cu-water hybrid nanomaterials and induced magnetic field, Int. J. Numer. Methods Heat Fluid Flow., 2019 · doi:10.1108/hff-12-2018-0748
[67] Aly, E. H.; Pop, I., MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition, Int. J. Numer. Methods Heat Fluid Flow, 2019 · doi:10.1108/hff-12-2018-0794
[68] Crane, L. J., Flow past a stretching plate, Z. Angew. Math. Phys., 21, 645-647, 1970
[69] Wang, C. Y., Liquid film on an unsteady stretching surface, Q. Appl. Math., 48, 601-610, 1990 · Zbl 0714.76036
[70] Goldstein, S., On backward boundary layers and flow in converging passages, J. Fluid Mech, 21, 33-45, 1965 · Zbl 0125.43303
[71] Miklavčič, M.; Wang, C. Y., Viscous flow due to a shrinking sheet, Q. Appl. Math., 64, 283-290, 2006 · Zbl 1169.76018
[72] Fang, T., Boundary layer flow over a shrinking sheet with power-law velocity, Int. J. Heat Mass Transf., 51, 5838-5843, 2008 · Zbl 1157.76010
[73] Magyari, E.; Keller, B., Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J. Phys. D. Appl. Phys., 32, 577-585, 1999
[74] Elbashbeshy, E. M.A., Heat transfer over an exponentially stretching continuous surface with suction, Arch. Mech., 53, 643-651, 2001 · Zbl 0999.76041
[75] El-Aziz, M. A., Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet, Can. J. Phys., 87, 359-368, 2009
[76] Sajid, M.; Hayat, T., Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet, Int. Commun. Heat Mass Transf., 35, 347-356, 2008
[77] Bidin, B.; Nazar, R., Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation, Eur. J. Sci. Res., 33, 710-717, 2009
[78] Bhattacharyya, K.; Pop, I., MHD boundary layer flow due to an exponentially shrinking sheet, Magnetohydrodynamics, 47, 337-344, 2011
[79] Nadeem, S.; Ul Haq, R.; Lee, C., MHD flow of a Casson fluid over an exponentially shrinking sheet, Sci. Iran., 19, 1550-1553, 2012
[80] Ishak, A., MHD boundary layer flow due to an exponentially stretching sheet with radiation effect, Sains Malays, 40, 391-395, 2011
[81] Mabood, F.; Khan, W. A.; Ismail, A. I.M., MHD flow over exponential radiating stretching sheet using homotopy analysis method, J. King Saud Univ., 29, 68-74, 2017
[82] Zaib, A.; Bhattacharyya, K.; Shafie, S., Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid, J. Cent. South Univ., 22, 4856-4863, 2015
[83] Ghosh, S.; Mukhopadhyay, S., Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip, Neural Comput. Appl., 2019 · doi:10.1007/s00521-019-04221-w
[84] Hafidzuddin, E. H.; Nazar, R.; Arifin, N. M.; Pop, I., Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity, J. Appl. Fluid Mech., 9, 2025-2036, 2016
[85] Partha, M. K.; Murthy, P. V.S. N.; Rajasekhar, G. P., Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface, Heat Mass Transf. Stoffuebertragung., 41, 360-366, 2005
[86] Pal, D., Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field, Appl. Math. Comput., 217, 2356-2369, 2010 · Zbl 1203.80012
[87] Rohni, A. M.; Ahmad, S.; Ismail, A. I.M.; Pop, I., Boundary layer flow and heat transfer over an exponentially shrinking vertical sheet with suction, Int. J. Therm. Sci., 64, 264-272, 2013
[88] Bhattacharyya, K., Boundary layer flow and heat transfer over an exponentially shrinking sheet, Chinese Phys. Lett., 28, Article 074701 pp., 2011
[89] Sharma, R.; Ishak, A.; Nazar, R.; Pop, I., Boundary layer flow and heat transfer over a permeable exponentially shrinking sheet in the presence of thermal radiation and partial slip, J. Appl. Fluid Mech., 7, 125-134, 2014
[90] Krishnamurthy, M. R.; Prasannakumara, B. C.; Gireesha, B. J.; Gorla, S. R., Effect of viscous dissipation on hydromagnetic fluid flow and heat transfer of nanofluid over an exponentially stretching sheet with fluid-particle suspension, Cogent. Math., 2, Article 1050973 pp., 2015 · Zbl 1339.76062
[91] Rosseland, S., Astrophysik und Atom-Theoretische Grundlagen, 1931, Springer-Verlag: Springer-Verlag Berlin · JFM 57.1616.05
[92] Cortell, R., Heat and fluid flow due to non-linearly stretching surfaces, Appl. Math. Comput., 217, 7564-7572, 2011 · Zbl 1285.76009
[93] Magyari, E.; Pantokratoras, A., Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows, Int. Commun. Heat Mass Transf., 38, 554-556, 2011
[94] Oztop, H. F.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326-1336, 2008
[95] Raza, J.; Rohni, A.; Omar, Z., Numerical investigation of copper-water (Cu-water) nanofluid with different shapes of nanoparticles in a channel with stretching wall: slip effects, Math. Comput. Appl., 21, 43, 2016
[96] Fang, T.; Zhang, J., Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul., 14, 2853-2857, 2009 · Zbl 1221.76142
[97] Merkin, J. H., On dual solutions occurring in mixed convection in a porous medium, J. Eng. Math., 20, 171-179, 1986 · Zbl 0597.76081
[98] Weidman, P. D.; Kubitschek, D. G.; Davis, A. M.J., The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44, 730-737, 2006 · Zbl 1213.76064
[99] Harris, S. D.; Ingham, D. B.; Pop, I., Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip, Transp. Porous Media, 77, 267-285, 2009
[100] Shampine, L. F.; Gladwell, I.; Thompson, S., Solving ODEs with MATLAB, 2003, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1079.65144
[101] Awaludin, I. S.; Ishak, A.; Pop, I., On the stability of MHD boundary layer flow over a stretching/shrinking wedge, Sci. Rep., 8, 13622, 2018
[102] Soid, S. K.; Ishak, A.; Pop, I., MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary, Sains Malays, 47, 2907-2916, 2018
[103] Jusoh, R.; Nazar, R.; Pop, I., Magnetohydrodynamic boundary layer flow and heat transfer of nanofluids past a bidirectional exponential permeable stretching/shrinking sheet with viscous dissipation effect, J. Heat Transf., 141, Article 012406 pp., 2019
[104] Kamal, F.; Zaimi, K.; Ishak, A.; Pop, I., Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect, Sains Malays, 48, 243-250, 2019
[105] Khashi’ie, N. S.; Arifin, N. M.; Nazar, R.; Hafidzuddin, E. H.; Wahi, N.; Pop, I., A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip, Energies, 12, 1268, 2019
[106] Khashi’ie, N. S.; Arifin, N. M.; Rashidi, M. M.; Hafidzuddin, E. H.; Wahi, N., Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium, J. Therm. Anal. Calorim., 8, 1-14, 2019
[107] Waini, I.; Ishak, A.; Pop, I., On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux, Chin. J. Phys., 60, 651-658, 2019 · Zbl 07823622
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.