×

Ion temperature gradient mode driven solitons and shocks in superthermal plasma. (English) Zbl 07848651

Summary: An analysis of the ion temperature gradient driven mode solitary and shock waves in superthermal plasma is presented. Based on the observation in linear region it is shown that the phase velocity of the mode has strong dependency on superthermal particles population and on ion temperature. Linear dispersion relation is reduced to two different results by considering different limiting cases: (i) when superthermality (\(\boldsymbol{\kappa}\)) is ignored in the system and (ii) when the fluctuations are caused by \(\mathbf{E} \times \mathbf{B}\) convection only. In nonlinear regime we in our investigations observe that, nonlinear waves are strongly modified in superthermal plasmas. Furthermore, the different parametric analysis clearly shows that speed and the energy of these nonlinear structures driven by ion temperature gradient modify. These parametric analysis are quite constructive, which in turns may provide help in future designing of plasma fusion devices. The present investigation of this article may have its relevance to astrophysical and laboratory plasma.

MSC:

82-XX Statistical mechanics, structure of matter
82Dxx Applications of statistical mechanics to specific types of physical systems
76Xxx Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI

References:

[1] Horton, W., Turbulent Transport in Magnetized Plasmas, 2012, World Scientific Publishing · Zbl 1369.82001
[2] (Consultants Bureau, New York)
[3] Hassam, A. B.; Antonsen, T. M.; Drake, J. F.; Guzdar, P. N., Theory of ion temperature gradient instabilities: thresholds and transport, Phys. Fluids B, 2, 1822-1832, 1990
[4] Ryter, F.; Angioni, C.; Dunne, M.; Fischer, R.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Suttrop, W.; Tardini, G.; Viezzer, E., M. willensdorfer and the ASDEX upgrade team, heat transport driven by the ion temperature gradient and electron temperature gradient instabilities in ASDEX upgrade h-modes, Nucl. Fusion, 59, 096052, 2019
[5] Chakrabarti, N.; Rasmussen, J. J., Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field, Phys. Plasmas, 6, 3047-3056, 1999
[6] Shukla, P. K.; Mamun, A. A., Solitons, shocks and vortices in dusty plasmas, New J. Phys, 5, 17.1-17.37, 2003
[7] Russel, J. S., Report on waves, york, UK, Br. Assoc. Adv. Sci., 311-390, 1844
[8] Nath, G., Shock wave driven out by a piston in a mixture of a non-ideal gas and small solid particles under the influence of the gravitation field with monochromatic radiation, Chin. J. Phys, 56, 1-35, 2018
[9] Saakian, D. B.; Ghazaryan, M. H.; Hu, C.-K., Punctuated equilibrium and shock waves in molecular models of biological evolution, Phys. Rev. E, 90, 022712, 2014
[10] Li-Ping, Z.; Li-Hua, Y., Nonlinear shock structures with contributions of arbitrary dust size distribution and nonadiabatic charge fluctuation in dusty plasmas, Chin.J. Phys, 94, 1111, 2019
[11] El-Monier, S. Y.; Atteya, A., Higher order corrections and temperature effects to ion acoustic shock waves in quantum degenerate electron-ion plasma, Chin.J. Phys., 60, 695-708, 2019 · Zbl 07823627
[12] Baumjohann, W.; Treumann, R. A., Basic space plasma physics, 1997, Imperial College Press: Imperial College Press London · Zbl 0971.82040
[13] Zakharov, V. E.; Rubenchik, A. M., Instability of waveguides and solitons in nonlinear media, Sov. Phys. JETP., 38, 494-500, 1974
[14] Shah, A.; Saeed, R., Nonlinear Korteweg-De-Vries Burger equation for ion acoustic shock waves in the presence of kappa distributed electrons and positrons, Plasma Phys. Cont. Fusion, 53, 095006, 2011
[15] Arons, J., Neutron Stars and Pulsars, 357, 373, 2009, Springer Berlin Heidelberg
[16] Montgomery, M. D.; Bame, S. J.; Hundhause, A. J., Magnetic and thermal pressures in the solar wind, J. Geophys. Res., 73, 4999, 1968
[17] Hellberg, M. A.; Mace, R. L., Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution, Phys. Plasmas, 9, 1495-1504, 2002
[18] Zakir, U.; Haque, Q.; Qamar, A.; Mirza, A. M., Ion-temperature-gradient driven modes in dust-contaminated plasma with nonthermal electron distribution and dust charge fluctuations, Astrophys. Space Sci., 350, 565-572, 2014
[19] Masood, W.; Rizvi, H.; Hasnain, H.; Batool, N., Dust drift shock waves with non-maxwellian ion population in nonuniform collisional dusty plasmas in planetary environments, Astrophys. Space Sci., 345, 49-55, 2013
[20] Han, J. N.; Duan, W. S.; Li, J. X.; He, Y. L.; Luo, J. H.; G. Nan, Y.; Han, Z. H.; Dong, G. X., Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons, Phys. Plasmas, 21, 012102, 2014
[21] Vasyliunas, V. M., A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839-2841, 1968
[22] Basu, B., Low frequency electrostatic waves in weakly inhomogeneous magnetoplasma modeled by Lorentzian (kappa) distributions, Phys. Plasmas, 15, 042108, 2008
[23] Weiland, J., Collective modes in inhomogeneous media: kinetic and advanced fluid theory, IoP, Bristol, 2000
[24] Taibany, E. L.; Wadati, M.; Sabry, R., Nonlinear dust acoustic waves in a nonuniform magnetized complex plasma with nonthermal ions and dust charge variation, Phys. Plasmas, 14, 032304, 2007
[25] Singapore
[26] Shan, S. A.; Haque, Q., Ion acoustic drift solitons and shocks with \(\kappa \)-distributed electrons, Astrophys. Space Sci., 350, 217-222, 2014
[27] Khan, M. Y.; Iqbal, J., Effect of entropy on soliton profile in ITG driven magneto-plasma, Phys. Plasmas, 24, 082514, 2017
[28] Zhang, Y. Q.; Desilva, A. W.; Mostovych, A. N., Density fluctuation spectra of a collision-dominated plasma measured by light scattering, Phys. Rev. Lett., 62, 1848, 1989
[29] Dyachenko, A. I.; Nazarenko, S. V.; Zakharov, V. E., Wave-vortex dynamics in drift and \(\beta \)-plane turbulence, Phys. Lett. A, 165, 330-334, 1992
[30] Horton, W., Drift waves and transport, Rev. Mod. Phys., 71, 735-778, 1999
[31] Jarmen, A.; Andersson, P., Fully toroidal ion temperature gradient driven drift modes, Nuc. Fusion, 27, 941-949, 1987
[32] Pavlenko, V.; Weiland, J., Transport due to ion temperature gradient mode vortex turbulence, Phys. Scr., 47, 96-98, 1993
[33] Zakir, U.; Adnan, M.; Haque, Q.; Qamar, A.; Mirza, A. M., Ion temperature gradient mode driven solitons and shocks, Phys. Plasmas, 23, 042104, 2016
[34] Migliano, P.; Buchhloz, R.; Grasshauser, S. R.; A. Hornsby, W.; Peeters, A. G., The radial propagation of turbulence in gyro-kinetic toroidal systems, Plasma Phys. Cont. Fusion, 57, 054008, 2015
[35] Sultana, S.; Sarri, G.; Kourakis, I., Electrostatic shock dynamics in superthermal plasmas, Phys. Plasmas, 19, 012310, 2012
[36] Qamar, A.; Mirza, A. M.; Murtaza, G.; Vranje’s, J.; H. Sakanaka, P., Formation of quadrupolar vortices in ion temperature-gradient modes, Phys. Plasmas, 10, 2819-2823, 2003
[37] Davydova, T. A.; Yu, A., Pankin, envelope nonlinear drift structures in a non-equilibrium plasma near the boundary of marginal stability, J. Plasma Phys., 59, 179-191, 1998
[38] Shukla, P. K., Ion temperature gradient mode in the weak density limit, Phys. Fluids B, 2, 848-850, 1990
[39] Mirza, A. M.; Shukla, P. K., Ion-temperature-gradient driven modes in very dense magnetoplasmas, Phys. Plasmas, 15, 022106, 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.