×

Time evolutions of scalar field perturbation in Schwarzschild de-Sitter black hole from Einstein-scalar-Gauss-Bonnet theory. (English) Zbl 1537.83084

MSC:

83C57 Black holes
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI

References:

[1] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[2] Abbott, B. P., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.241103
[3] Akiyama, K., First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett., 875, L1 (2019) · doi:10.3847/2041-8213/ab0ec7
[4] Polchinski, J., String Theory, Vol. 1 & 2 (2001), Cambridge: Cambridge University Press, Cambridge
[5] Antoniou, G.; Bakopoulos, A.; Kanti, P., Evasion of no-hair theorems and novel black-hole solutions in Gauss-Bonnet theories, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131102
[6] Silva, H. O.; Sakstein, J.; Gualtieri, L.; Sotiriou, T. P.; Berti, E., Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131104
[7] Doneva, D. D.; Yazadjiev, S. S., New Gauss-Bonnet black holes with curvature-induced scalarization in extended scalar-tensor theories, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.131103
[8] Herdeiro, C. A R.; Radu, E., Black hole scalarization from the breakdown of scale invariance, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.084039
[9] Brihaye, Y.; Herdeiro, C.; Radu, E., The scalarised Schwarzschild-NUT spacetime, Phys. Lett., 788, 295-301 (2019) · Zbl 1405.83024 · doi:10.1016/j.physletb.2018.11.022
[10] Minamitsuji, M.; Ikeda, T., Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.044017
[11] Silva, H. O.; Macedo, C. F B.; Sotiriou, T. P.; Gualtieri, L.; Sakstein, J.; Berti, E., Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.064011
[12] Andreou, NFranchini, NVentagli, GSotiriou, T P2019Spontaneous scalarization in generalised scalar-tensor theoryPhys. Rev.D99124022; Andreou, NFranchini, NVentagli, GSotiriou, T P2020Erratum: Spontaneous scalarization in generalized scalar-tensor theory [Phys. Rev. D 99, 124022 (2019)]Phys. Rev.D101109903
[13] Minamitsuji, M.; Ikeda, T., Spontaneous scalarization of black holes in the Horndeski theory, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.104069
[14] Peng, Y., Spontaneous scalarization of Gauss-Bonnet black holes surrounded by massive scalar fields, Phys. Lett., 807 (2020) · Zbl 1473.83054 · doi:10.1016/j.physletb.2020.135569
[15] Liu, H. S.; Lu, H.; Tang, Z. Y.; Wang, B., Black hole scalarization in Gauss-Bonnet extended Starobinsky gravity, Phys. Rev., 103 (2021) · doi:10.1103/PhysRevD.103.084043
[16] Doneva, D. D.; Staykov, K. V.; Yazadjiev, S. S.; Zheleva, R. Z., Multiscalar Gauss-Bonnet gravity: Hairy black holes and scalarization, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevD.102.064042
[17] Astefanesei, D.; Herdeiro, C.; Oliveira, J.; Radu, E., Higher dimensional black hole scalarization, J. High Energy Phys. (2020) · Zbl 1454.83054 · doi:10.1007/JHEP09(2020)186
[18] Cañate, P.; Perez Bergliaffa, S. E., Novel exact magnetic black hole solution in four-dimensional extended scalar-tensor-Gauss-Bonnet theory, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevD.102.104038
[19] Hunter, C. L.; Smith, D. J., Novel Hairy Black Hole Solutions in Einstein-Maxwell-Gauss-Bonnet-Scalar Theory, Int. J. Mod. Phys., 37, 9 (2022) · doi:10.1142/S0217751X22500452
[20] Bakopoulos, A.; Kanti, P.; Pappas, N., Existence of solutions with a horizon in pure scalar-Gauss-Bonnet theories, Phys. Rev., 101 (2020) · doi:10.1103/PhysRevD.101.044026
[21] Bakopoulos, A.; Kanti, P.; Pappas, N., Large and ultracompact Gauss-Bonnet black holes with a self-interacting scalar field, Phys. Rev., 101 (2020) · doi:10.1103/PhysRevD.101.084059
[22] Lin, K.; Zhang, S.; Zhang, C.; Zhao, X.; Wang, B.; Wang, A., No static regular black holes in Einstein-complex-scalar-Gauss-Bonnet gravity, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevD.102.024034
[23] Brihaye, Y.; Hartmann, B.; Aprile, N. P.; Urrestilla, J., Scalarization of asymptotically anti-de Sitter black holes with applications to holographic phase transitions, Phys. Rev., 101 (2020) · doi:10.1103/PhysRevD.101.124016
[24] Guo, H.; Kiorpelidi, S.; Kuang, X. M.; Papantonopoulos, E.; Wang, B.; Wu, J. P., Spontaneous holographic scalarization of black holes in Einstein-scalar-Gauss-Bonnet theories, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevD.102.084029
[25] Tang, Z. Y.; Wang, B.; Karakasis, T.; Papantonopoulos, E., Curvature scalarization of black holes in f(R) gravity, Phys. Rev., 104 (2021) · doi:10.1103/PhysRevD.104.064017
[26] Collodel, L. G.; Kleihaus, B.; Kunz, J.; Berti, E., Spinning and excited black holes in Einstein-scalar-Gauss-Bonnet theory, Class. Quant. Grav., 37 (2020) · Zbl 1479.83125 · doi:10.1088/1361-6382/ab74f9
[27] Dima, A.; Barausse, E.; Franchini, N.; Sotiriou, T. P., Spin-induced black hole spontaneous scalarization, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.231101
[28] Herdeiro, C. A R.; Radu, E.; Silva, H. O.; Sotiriou, T. P.; Yunes, N., Spin-induced scalarized black holes, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.011103
[29] Berti, E.; Collodel, L. G.; Kleihaus, B.; Kunz, J., Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.011104
[30] Bao, Y.; Guo, H.; Kuang, X. M., Excited states of holographic superconductor with scalar field coupled to Gauss-Bonnet invariance, Phys. Lett., 822 (2021) · Zbl 07417957 · doi:10.1016/j.physletb.2021.136646
[31] Guo, H.; Kuang, X. M.; Papantonopoulos, E.; Wang, B., Horizon curvature and spacetime structure influences on black hole scalarization, Eur. Phys. J., 81, 842 (2021) · doi:10.1140/epjc/s10052-021-09630-7
[32] Yang, Z. H.; Fu, G.; Kuang, X. M.; Wu, J. P., Instability of de-Sitter black hole with massive scalar field coupled to Gauss-Bonnet invariant and the scalarized black holes, Eur. Phys. J., 82, 868 (2022) · doi:10.1140/epjc/s10052-022-10834-8
[33] Zhang, S. J.; Wang, B.; Papantonopoulos, E.; Wang, A., Magnetic-induced spontaneous scalarization in dynamical Chern-Simons gravity, Eur. Phys. J. C, 83, 97 (2023) · doi:10.1140/epjc/s10052-023-11254-y
[34] Liu, Y.; Zhang, C. Y.; Chen, Q.; Cao, Z.; Tian, Y.; Wang, B., Critical scalarization and descalarization of black holes in a generalized scalar-tensor theory, Sci. China Phys. Mech. Astron., 66 (2023) · doi:10.1007/s11433-023-2160-1
[35] Myung, Y. S., Two instabilities of Schwarzschild-AdS black holes in Einstein-Weyl-scalar theory, Eur. Phys. J., 83, 902 (2023) · doi:10.1140/epjc/s10052-023-12073-x
[36] Perlmutter, S., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002 · doi:10.1086/307221
[37] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998) · doi:10.1086/300499
[38] Strominger, A., The dS/CFT correspondence, J. High Energy Phys. (2001) · doi:10.1088/1126-6708/2001/10/034
[39] Witten, E., Quantum gravity in de Sitter space (2001)
[40] Bakopoulos, A.; Antoniou, G.; Kanti, P., Novel black-hole solutions in Einstein-Scalar-Gauss-Bonnet theories with a cosmological constant, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.064003
[41] Brihaye, Y.; Herdeiro, C.; Radu, E., Black hole spontaneous scalarisation with a positive cosmological constant, Phys. Lett., 802 (2020) · Zbl 1435.83074 · doi:10.1016/j.physletb.2020.135269
[42] Castineiras, J.; Crispino, L. C B.; Filho, D. P M., Source coupled to the massive scalar field orbiting a stellar object, Phys. Rev., 75 (2007) · doi:10.1103/PhysRevD.75.024012
[43] Maselli, A.; Franchini, N.; Gualtieri, L.; Sotiriou, T. P.; Barsanti, S.; Pani, P., Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals, Nat. Astron., 6 (2022) · doi:10.1038/s41550-021-01589-5
[44] Doneva, D. D.; Staykov, K. V.; Yazadjiev, S. S., Gauss-Bonnet black holes with a massive scalar field, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.104045
[45] Macedo, C. F B.; Sakstein, J.; Berti, E.; Gualtieri, L.; Silva, H. O.; Sotiriou, T. P., Self-interactions and spontaneous black hole scalarization, Phys. Rev., 99 (2019) · doi:10.1103/PhysRevD.99.104041
[46] Doneva, D. D.; Collodel, L. G.; Krüger, C. J.; Yazadjiev, S. S., Spin-induced scalarization of Kerr black holes with a massive scalar field, Eur. Phys. J., 80, 1205 (2020) · doi:10.1140/epjc/s10052-020-08765-3
[47] Vishveshwara, C. V., Scattering of Gravitational Radiation by a Schwarzschild Black-hole, Nature, 227, 936-938 (1970) · doi:10.1038/227936a0
[48] Boulware, D. G.; Deser, S., String generated gravity models, Phys. Rev. Lett., 55, 2656 (1985) · doi:10.1103/PhysRevLett.55.2656
[49] Wiltshire, D. L., Black holes in string generated gravity models, Phys. Rev., 38, 2445 (1988) · doi:10.1103/PhysRevD.38.2445
[50] Cai, R. G., Gauss-Bonnet black holes in AdS spaces, Phys. Rev., 65 (2002) · doi:10.1103/PhysRevD.65.084014
[51] Neupane, I. P., Thermodynamic and gravitational instability on hyperbolic spaces, Phys. Rev., 69 (2004) · doi:10.1103/PhysRevD.69.084011
[52] Ge, X. H.; Sin, S. J., Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/05/051
[53] Kuang, X. M.; Wang, B.; Wu, J. P., Dipole coupling effect of holographic fermion in the background of charged Gauss-Bonnet AdS black hole, J. High Energy Phys. (2012) · doi:10.1007/JHEP07(2012)125
[54] Aránguiz, L.; Kuang, X. M.; Miskovic, O., Topological black holes in pure Gauss-Bonnet gravity and phase transitions, Phys. Rev., 93 (2016) · doi:10.1103/PhysRevD.93.064039
[55] Kuang, X. M.; Saavedra, J.; Övgün, A., The effect of the Gauss-Bonnet term to Hawking Radiation from arbitrary dimensional Black Brane, Eur. Phys. J., 77, 613 (2017) · doi:10.1140/epjc/s10052-017-5191-0
[56] Glavan, D.; Lin, C., Einstein-Gauss-Bonnet gravity in four-dimensional spacetime, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.081301
[57] Ge, X. H.; Sin, S. J., Causality of black holes in 4-dimensional Einstein-Gauss-Bonnet-Maxwell theory, Eur. Phys. J., 80, 695 (2020) · doi:10.1140/epjc/s10052-020-8288-9
[58] Zhu, Z.; Zhang, S. J.; Pellicer, C. E.; Wang, B.; Abdalla, E., Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev., 90 (2014) · doi:10.1103/PhysRevD.90.044042
[59] Zhang, S. J.; Wang, B.; Wang, A.; Saavedra, J. F., Object picture of scalar field perturbation on Kerr black hole in scalar-Einstein-Gauss-Bonnet theory, Phys. Rev., 102 (2020) · doi:10.1103/PhysRevD.102.124056
[60] Zhang, S. J., Massive scalar field perturbation on Kerr black holes in dynamical Chern-Simons gravity, Eur. Phys. J. C, 81, 441 (2021) · doi:10.1140/epjc/s10052-021-09249-8
[61] Berti, E.; Cardoso, V.; Starinets, A. O., Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26 (2009) · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[62] Konoplya, R. A.; Zhidenko, A., Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys., 83, 793-836 (2011) · doi:10.1103/RevModPhys.83.793
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.