×

Quantum gate-assisted teleportation in noisy environments: robustness and fidelity improvement. (English) Zbl 1537.81054

MSC:

81P65 Quantum gates
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P48 LOCC, teleportation, dense coding, remote state operations, distillation
Full Text: DOI

References:

[1] Pirandola, S.; Eisert, J.; Weedbrook, C.; Furusawa, A.; Braunstein, S. L., Advances in quantum teleportation, Nat Photonics., 9, 641-652 (2015) · doi:10.1038/nphoton.2015.154
[2] Song, D.; He, C.; Cao, Z.; Chai, G., Quantum teleportation of multiple qubits based on quantum Fourier transform, IEEE Commun. Lett., 22, 2427-2430 (2018) · doi:10.1109/LCOMM.2018.2874025
[3] Xu, R. Q.; Zhou, R. G.; Li, Y. C.; Jiang, S. X.; Ian, H., Enhancing robustness of noisy qutrit teleportation with Markovian memory, EPJ. Quantum. Technol., 9, 4 (2022) · doi:10.1140/epjqt/s40507-022-00122-5
[4] Jahanbakhsh, F.; Tavassoly, M. K., Teleportation of unknown states of a qubit and a single-mode field in strong coupling regime without Bell-state measurement, Commun. Theor. Phys., 75 (2023) · Zbl 1516.81052 · doi:10.1088/1572-9494/acafd7
[5] He, M-Y; Ma, S-Y; Kang, K-P, A universal protocol for bidirectional controlled teleportation with network coding, Commun. Theor. Phys., 73 (2021) · Zbl 1514.81087 · doi:10.1088/1572-9494/ac1168
[6] Schaetz, T., Quantum dense coding with atomic qubits, Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.040505
[7] Guo, Y.; Liu, B. H.; Li, C. F.; Guo, G. C., Advances in quantum dense coding, Adv. Quantum. Technol., 2 (2019) · doi:10.1002/qute.201900011
[8] Chen, Y.; Liu, S.; Lou, Y.; Jing, J., Orbital angular momentum multiplexed quantum dense coding, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.093601
[9] Bell, B. A., Experimental demonstration of graph-state quantum secret sharing, Nat. Commun., 5, 5480 (2014) · doi:10.1038/ncomms6480
[10] Qin, H.; Tang, W. K S.; Tso, R., Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE .J. Sel .Top, Quantum .Electron., 26 (2020) · doi:10.1109/JSTQE.2020.2975600
[11] Senthoor, K.; Sarvepalli, P. K., Theory of communication efficient quantum secret sharing, IEEE Trans. Inf. Theory., 68, 3164-3186 (2022) · Zbl 1497.81045 · doi:10.1109/TIT.2021.3139839
[12] Pereira, D.; Almeida, M.; Facão, M.; Pinto, A. N.; Silva, N. A., Impact of receiver imbalances on the security of continuous variables quantum key distribution, EPJ .Quantum .Technol., 8, 22 (2021) · doi:10.1140/epjqt/s40507-021-00112-z
[13] Amer, O.; Garg, V.; Krawec, W. O., An introduction to practical quantum key distribution, IEEE Aerosp Electron Syst. Mag., 36, 30-55 (2021) · doi:10.1109/MAES.2020.3015571
[14] Cao, Y.; Zhao, Y.; Wang, Q.; Zhang, J.; Ng, S. X.; Hanzo, L., The evolution of quantum key distribution networks: on the road to the qinternet, IEEE Commun. Surv. Tut., 24, 839-894 (2022) · doi:10.1109/COMST.2022.3144219
[15] Nielsen, M. A.; Chuang, I. L., Quantum. Computation and Quantum Information (2011), Cambridge: Cambridge University Press, Cambridge
[16] Cacciapuoti, A. S.; Caleffi, M.; Tafuri, F.; Cataliotti, F. S.; Gherardini, S.; Bianchi, G., Quantum internet: networking challenges in distributed quantum computing, IEEE Netw., 34, 137-143 (2020) · doi:10.1109/MNET.001.1900092
[17] Rota, M. B.; Basset, F. B.; Tedeschi, D.; Trotta, R., Entanglement teleportation with photons from quantum dots: toward a solid-state based quantum network, IEEE J.Sel. Top Quantum. Electron., 26 (2020) · doi:10.1109/JSTQE.2020.2985285
[18] Ying, M.; Feng, Y., An algebraic language for distributed quantum computing, IEEE Trans. Comput., 58, 728-743 (2009) · Zbl 1367.81039 · doi:10.1109/TC.2009.13
[19] Lan, J. H.; Lu, X. J.; Kuang, S., Multi-hop remote single qubit state preparation based on arbitrary Bell states, Int. J. Theor. Phys., 61, 240 (2022) · Zbl 1514.81075 · doi:10.1007/s10773-022-05200-z
[20] Cuomo, D.; Caleffi, M.; Cacciapuoti, A. S., Towards a distributed quantum computing ecosystem, IET Quantum Commun., 1, 3-8 (2020) · doi:10.1049/iet-qtc.2020.0002
[21] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[22] Karlsson, A.; Bourennane, M., Quantum teleportation using three-particle entanglement, Phys. Rev. A, 58, 4394-4400 (1998) · doi:10.1103/PhysRevA.58.4394
[23] Agrawal, P.; Pati, A., Perfect teleportation and superdense coding with W states, Phys. Rev. A, 74 (2006) · doi:10.1103/PhysRevA.74.062320
[24] Breuer, H. P.; Petruccione, F., The Theory of Open Quantum. Systems (2007), Oxford: Oxford University Press, Oxford
[25] Cong, S., Control of Quantum Systems: Theory and Methods (2014), New York: Wiley, New York · Zbl 1298.81001
[26] Chandra, D.; Cacciapuoti, A. S.; Caleffi, M.; Hanzo, L., Direct quantum communications in the presence of realistic noisy entanglement, IEEE Trans. Commun., 70, 469-484 (2022) · doi:10.1109/TCOMM.2021.3122786
[27] Cacciapuoti, A. S.; Caleffi, M.; Van Meter, R.; Hanzo, L., When entanglement meets classical communications: quantum teleportation for the quantum internet, IEEE Trans Commun., 68, 3808-3833 (2020) · doi:10.1109/TCOMM.2020.2978071
[28] Darmawan, A. S.; Poulin, D., Tensor-network simulations of the surface code under realistic noise, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.040502
[29] Yan, H., Entanglement purification and protection in a superconducting quantum network, Phys .Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.080504
[30] Li, W. C.; Xiao, Y.; Han, X. H.; Fan, X.; Hei, X. B.; Gu, Y. J., Dynamics of multipartite quantum steering for different types of decoherence channels, Sci. Rep., 13, 3798 (2023) · doi:10.1038/s41598-023-30869-5
[31] Hu, Z.; Xia, R.; Kais, S., A quantum algorithm for evolving open quantum dynamics on quantum computing devices, Sci. Rep., 10, 3301 (2020) · doi:10.1038/s41598-020-60321-x
[32] Kim, Y. S.; Lee, J. C.; Kwon, O.; Kim, Y. H., Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nat Phys., 8, 117-120 (2012) · doi:10.1038/nphys2178
[33] Kim, Y. S.; Cho, Y. W.; Ra, Y. S.; Kim, Y. H., Reversing the weak quantum measurement for a photonic qubit, Opt. Express., 17, 11978-11985 (2009) · doi:10.1364/OE.17.011978
[34] Singh, U.; Mishra, U.; Dhar, H. S., Enhancing robustness of multiparty quantum correlations using weak measurement, Ann. Phys. (N Y)., 350, 50-68 (2014) · Zbl 1344.81049 · doi:10.1016/j.aop.2014.07.013
[35] Wang, C., Feed-forward control for quantum state protection against decoherence, Phys. Rev.A, 89 (2014) · doi:10.1103/PhysRevA.89.032303
[36] Guo, L. S., Discriminating two nonorthogonal states against a noise channel by feed-forward control, Phys. Rev. A, 91 (2015) · doi:10.1103/PhysRevA.91.022321
[37] Li, Y. L.; Zu, C. J.; Wei, D. M., Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal, Quantum. Inf. Process., 18, 2 (2019) · Zbl 1417.81065 · doi:10.1007/s11128-018-2114-4
[38] Harraz, S.; Cong, S.; Nieto, J. J., Enhancing quantum teleportation fidelity under decoherence via weak measurement with flips, EPJ. Quantum. Technol., 9, 15 (2022) · doi:10.1140/epjqt/s40507-022-00134-1
[39] Harraz, S.; Cong, S.; Nieto, J. J., Protected quantum teleportation through noisy channel by weak measurement and environment-assisted measurement, IEEE Commun. Lett., 26, 528-531 (2021) · doi:10.1109/LCOMM.2021.3138854
[40] Zhao, X.; Hedemann, S. R.; Yu, T., Restoration of a quantum state in a dephasing channel via environment-assisted error correction, Phys. Rev. A, 88 (2013) · doi:10.1103/PhysRevA.88.022321
[41] Azuma, K.; Tamaki, K.; Lo, H. K., All-photonic quantum repeaters, Nat Commun., 6, 6787 (2015) · doi:10.1038/ncomms7787
[42] Harraz, S.; Zhang, J. Y.; Cong, S., High-fidelity quantum teleportation through noisy channels via weak measurement and environment-assisted measurement, Results Phys., 55 (2023) · doi:10.1016/j.rinp.2023.107164
[43] Im, D., Optimal teleportation via noisy quantum channels without additional qubit resources, Npj. Quantum. Inf., 7, 86 (2021) · doi:10.1038/s41534-021-00426-x
[44] Lee, S. W.; Im, D. G.; Kim, Y. H.; Nha, H.; Kim, M. S., Quantum teleportation is a reversal of quantum measurement, Phys. Rev. Res., 3 (2021) · doi:10.1103/PhysRevResearch.3.033119
[45] Al Amri, M.; Scully, M. O.; Zubairy, M. S., Reversing the weak measurement on a qubit, J .Phys. B: At. Mol. Opt. Phys., 44 (2011) · doi:10.1088/0953-4075/44/16/165509
[46] Liao, Z.; Al-Amri, M.; Zubairy, M. S., Protecting quantum entanglement from amplitude damping, J. Phys. B: At. Mol. Opt. Phys., 46 (2013) · doi:10.1088/0953-4075/46/14/145501
[47] Esfahani, S. S.; Liao, Z.; Zubairy, M. S., Robust quantum state recovery from amplitude damping within a mixed states framework, J .Phys. B: At. Mol .Opt. Phys., 49 (2016) · doi:10.1088/0953-4075/49/15/155501
[48] Zhao, Z., Experimental demonstration of a nondestructive controlled-NOT quantum gate for two independent photon qubits, Phys. Rev. Lett., 94, 30501 (2005) · doi:10.1103/PhysRevLett.94.030501
[49] Lin, Q.; Li, J., Quantum control gates with weak cross-Kerr nonlinearity, Phys. Rev. A, 79 (2009) · doi:10.1103/PhysRevA.79.022301
[50] Xiu, X-M; Dong, L.; Gao, Y-J; Yi, X. X., Nearly deterministic controlled-not gate with weak cross-Kerr nonlinearities, Quantum. Inf. Comput., 12, 159-170 (2012) · Zbl 1268.81050 · doi:10.26421/QIC12.1-2-11
[51] Bowdrey, M. D.; Oi, D. K L.; Short, A. J.; Banaszek, K.; Jones, J. A., Fidelity of single qubit maps, Phys. Lett. A, 294, 258-260 (2002) · Zbl 0992.81007 · doi:10.1016/S0375-9601(02)00069-5
[52] Gregoratti, M.; Werner, R. F., Quantum lost and found, J Mod. Opt., 50, 915-933 (2003) · Zbl 1255.81105 · doi:10.1080/09500340308234541
[53] Wang, K.; Zhao, X.; Yu, T., Environment-assisted quantum state restoration via weak measurements, Phys. Rev. A, 89 (2014) · doi:10.1103/PhysRevA.89.042320
[54] Li, Y. L.; Sun, F.; Yang, J.; Xiao, X., Enhancing the teleportation of quantum Fisher information by weak measurement and environment-assisted measurement, Quantum .Inf. Process., 20, 55 (2021) · Zbl 1509.81209 · doi:10.1007/s11128-021-02998-1
[55] Zeng, X.; Ge, G. Q.; Zubairy, M. S., Quantum state protection in finite-temperature environment via quantum gates, Opt. Express., 27, 25789-25801 (2019) · doi:10.1364/OE.27.025789
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.