×

Equidistribution in the space of 3-lattices and Dirichlet-improvable vectors on planar lines. (English) Zbl 07834222

The setting considered here is the homogeneous space \(X={\mathrm{SL}}_3(\mathbb{R})/{\mathrm{SL}}_3(\mathbb{Z})\) and the action of \(g_t={\text{diag}}({\mathrm{e}}^{2t},{\mathrm{e}}^{-t},{\mathrm{e}}^{-t})\) on \(X\). Write \(\nu\) for the push-forward under the quotient map \({\mathrm{SL}}_3(\mathbb{R})\to X\) of a straight line segment in the expanding horosphere of \(\{g_t\mid t>0\}\). The main results here give necessary and sufficient Diophantine conditions on the line to ensure that various families of measures on \(X\) defined using the line equidistribute. These equidistribution results are applied to show that almost every point on the line \(y=ax+b\) is not Dirichlet-improvable if and only if one of the coefficients \(a,b\) is irrational.

MSC:

37A17 Homogeneous flows
37A44 Relations between ergodic theory and number theory
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37A30 Ergodic theorems, spectral theory, Markov operators
11J13 Simultaneous homogeneous approximation, linear forms
11J83 Metric theory

References:

[1] A. BOREL, “Introduction aux Groupes Arithmétiques”, Actualités Scientifiques et Indus-trielles, Hermann, Paris, 1969. · Zbl 0186.33202
[2] A. BOREL, “Linear Algebraic Groups”, second edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[3] J. W. S. CASSELS, “An Introduction to Diophantine Approximation”, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. · Zbl 0077.04801
[4] Y. CHEUNG and N. CHEVALLIER, Hausdorff dimension of singular vectors, Duke Math. J. 165 (2016), 2273-2329. · Zbl 1358.11078
[5] S. CHOW and L. YANG, An effective Ratner equidistribution theorem for multiplicative diophantine approximation on planar lines, Invent. Math. 235 (2024), 973-1007. · Zbl 1537.37012
[6] S. G. DANI, Divergent trajectories of flows on homogeneous spaces and Diophantine ap-proximation, J. Reine Angew. Math. 359 (1985), 55-89. · Zbl 0578.22012
[7] S. G. DANI and G. A. MARGULIS, Values of quadratic forms at primitive integral points, Invent. Math. 98 (1989), 405-424. · Zbl 0682.22008
[8] S. G. DANI and G. A. MARGULIS, Limit distributions of orbits of unipotent flows and values of quadratic forms, In: “I. M. Gel”fand Seminar“, S. Gel”fand and S. Ginkikin (eds.), Adv. Soviet Math., Vol. 16, American Mathematical Society, Providence, RI, 1993, 91-137. · Zbl 0814.22003
[9] M. M. DODSON, Hausdorff dimension, lower order and Khintchine’s theorem in metric Diophantine approximation, J. Reine Angew. Math. 432 (1992), 69-76. · Zbl 0749.11036
[10] H. DAVENPORT and W. M. SCHMIDT, Dirichlet’s theorem on diophantine approximation. II, Acta Arith. 16 (1969/1970), 413-424. · Zbl 0201.05501
[11] H. DAVENPORT and W. M. SCHMIDT, Dirichlet’s theorem on diophantine approximation, In: “Symposia Mathematica, Vol. IV” (INDAM, Rome, 1968/69), Academic Press, Lon-don, 1970, 113-132. · Zbl 0226.10032
[12] D. DICKINSON and S. L. VELANI, Hausdorff measure and linear forms, J. Reine Angew. Math. 490 (1997), 1-36. · Zbl 0880.11058
[13] M. EINSIEDLER and R. SHI, Measure rigidity for solvable group actions in the space of lattices, Monatsh. Math. 189 (2019), 421-428. · Zbl 1427.37002
[14] W. FULTON and J. HARRIS, “Representation Theory”, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991. A first course, Readings in Mathematics. · Zbl 0744.22001
[15] W. GAUTSCHI, On inverses of Vandermonde and confluent Vandermonde matrices, Numer. Math. 4 (1962), 117-123. · Zbl 0108.12501
[16] G. R. KEMPF, Instability in invariant theory, Ann. of Math. (2) 108 (1978), 299-316. · Zbl 0406.14031
[17] A. KHINTCHINE, Zur metrischen theorie der diophantischen approximationen, Math. Z. 24 (1926), 706-714. · JFM 52.0183.02
[18] D. KLEINBOCK, Extremal subspaces and their submanifolds, Geom. Funct. Anal. 13 (2003), 437-466. · Zbl 1113.11044
[19] D. Y. KLEINBOCK and G. A. MARGULIS, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, In: “Sinaı”s ˘Moscow Seminar on Dynamical Systems”, L. A. Buni-movich, B. M. Gurevich and Ya. B. Pesin (eds.), Amer. Math. Soc. Transl. Ser. 2, Vol. 171, Amer. Math. Soc., Providence, RI, 1996, 141-172. · Zbl 0843.22027
[20] D. Y. KLEINBOCK and G. A. MARGULIS, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), 339-360. · Zbl 0922.11061
[21] D. KLEINBOCK and B. WEISS, Dirichlet’s theorem on Diophantine approximation and homogeneous flows, J. Mod. Dyn. 2 (2008), 43-62. · Zbl 1143.11022
[22] S. MOZES and N. SHAH, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), 149-159. · Zbl 0818.58028
[23] M. RATNER, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), 545-607. · Zbl 0763.28012
[24] D. ROY, On Schmidt and Summerer parametric geometry of numbers, Ann. of Math. (2) 182 (2015), 739-786. · Zbl 1328.11076
[25] N. A. SHAH, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), 315-334. · Zbl 0702.22014
[26] N. A. SHAH, Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation, Invent. Math. 177 (2009), 509-532. · Zbl 1210.11083
[27] N. A. SHAH, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J. 148 (2009), 251-279. · Zbl 1171.37003
[28] N. A. SHAH, Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms, J. Amer. Math. Soc. 23 (2010), 563-589. · Zbl 1200.11055
[29] R. SHI and B. WEISS, Invariant measures for solvable groups and Diophantine approxi-mation, Israel J. Math. 219 (2017), 479-505. · Zbl 1430.11093
[30] N. A. SHAH and P. YANG, Limit distributions of expanding translates of shrinking sub-manifolds and non-improvability of Dirichlet’s approximation theorem, J. Mod. Dyn. 19 (2023), 947-965. · Zbl 1533.37010
[31] N. SHAH and L. YANG, Equidistribution of curves in homogeneous spaces and Dirichlet’s approximation theorem for matrices, Discrete Contin. Dyn. Syst. 40 (2020), 5247-5287. · Zbl 1446.11133
[32] N. A. SHAH and P. YANG, Equidistribution of expanding degenerate manifolds in the space of lattices, pre-prints (2021) arXiv:2112.13952.
[33] P. YANG, Equidistribution of expanding translates of curves and Diophantine approxima-tion on matrices, Invent. Math. 220 (2020), 909-948. Brandeis University Waltham, MA 02454-9110, USA kleinboc@brandeis.edu CNRS Université Paris-Nord 13 · Zbl 1456.22003
[34] Paris, France desaxce@math.univ-paris13.fr The Ohio State University Columbus, OH 43210, USA shah@math.osu.edu Morningside Center of Mathematics Chinese Academy of Sciences Beijing, China yangpengyu@amss.ac.cn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.