×

The existence of solutions to higher-order differential equations with nonhomogeneous conditions. (English) Zbl 1539.34023

The authors study the existence and uniqueness of solutions for a boundary value problem consisting of the higher-order differential equation \[ x^{(l)}(s)+g(s,x(s))=0,\ s\in[c,d], \] subject to the three-point nonhomogeneous conditions \[ x(c)=0,\ x'(c)=0,\ x''(c)=0,\ \dots,\ x^{(l-2)}(c)=0,\] \[x^{(l-2)}(d)-\beta\ x^{(l-2)}(\eta)=\gamma. \] The main tools in the proofs are the Banach fixed point theorem and the Rus fixed point theorem.
First, the authors rewrite the main problem as an equivalent integral equation. Then, the authors define an operator in a suitable set of functions and prove that the operator has a unique fixed point.
In fact, the main results state that if the nonlinearity in the equation satisfies a Lipschitz condition and the length of the interval in the boundary conditions is not large, then the problem has a unique solution.
Examples, which illustrate the applicability of the obtained results, are provided at the end of the article.
The obtained results continue studies of the subject and may be useful for researchers in the field. The list of references contains 26 items.

MSC:

34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Agarwall, RP; Akrivis, G., Boundary value problems occuring in plate deflection theory, J. Comput. Appl. Math., 8, 3, 145-154, 1982 · Zbl 0503.73061 · doi:10.1016/0771-050X(82)90035-3
[2] Almuthaybiri, SS; Jonnalagadda, JM; Tisdell, CC, Existence and uniqueness of solutions to third-order boundary value problems, Trends Comput. Appl. Math., 22, 2, 221-240, 2021 · Zbl 1532.34034 · doi:10.5540/tcam.2021.022.02.00221
[3] Almuthaybiri, SS; Tisdell, CC, Existence and uniqueness of solutions to third-order boundary value problems: Analysis in closed and bounded sets, Differ. Equ. Appl., 12, 3, 291-312, 2020 · Zbl 1474.34134 · doi:10.7153/dea-2020-12-19
[4] Almuthaybiri, SS; Tisdell, CC, Sharper existence and uniqueness results for solutions to fourth-order boundary value problems and elastic beam analysis, Open Math., 18, 1, 1006-1024, 2020 · Zbl 1475.34019 · doi:10.1515/math-2020-0056
[5] Almuthaybiri, SS; Tisdell, CC, Sharper existence and uniqueness results for solutions to third order boundary value problems, Math. Model. Anal., 25, 3, 409-420, 2020 · Zbl 1476.34071 · doi:10.3846/mma.2020.11043
[6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3(1):133-181, 1922, eudml.org/doc/213289. · JFM 48.0201.01
[7] Choobbasti, AJ; Barari, A.; Farrokhzad, F.; Ganji, DD, Analytical investigation of a fourth order boundary value problem in deformation of beams and plate deflection theory, J. Appl. Sci., 8, 11, 2148-2152, 2008 · doi:10.3923/jas.2008.2148.2152
[8] Elcrat, AR, On the radial flow of a viscous fluid between porous disks, Arch. Ration. Mech. Anal., 61, 1, 91-96, 1976 · Zbl 0347.76022 · doi:10.1007/BF00251865
[9] Erturk, VS, A unique solution to a fourth order three-point boundary value problem, Turk. J. Math., 44, 5, 1941-1949, 2020 · Zbl 1493.34060 · doi:10.3906/mat-2007-79
[10] Gupta, CP, Existence and uniqueness results for the bending of an elastic beam equation at resonance, J. Math. Anal. Appl., 135, 1, 208-225, 1988 · Zbl 0655.73001 · doi:10.1016/0022-247X(88)90149-7
[11] O. Hölder, Über einen Mittelwertsatz, Gött. Nachr., 1889(1):38-47, 1889, http://eudml.org/doc/180218. · JFM 21.0260.07
[12] Lakoud, AG; Zenkoufi, L., Existence of positive solutions for a fourth order three point boundary value problem, J. Appl. Math. Comput., 50, 1, 139-155, 2016 · Zbl 1334.34057 · doi:10.1007/s12190-014-0863-5
[13] Li, Y.; Gao, Y., Existence and uniqueness results for the bending elastic beam equations, Appl. Math. Lett., 95, 17, 72-77, 2019 · Zbl 1467.34026 · doi:10.1016/j.aml.2019.03.025
[14] R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value problem, Hiroshima Math. J., 33(2):217-227, 2003, doi:10.32917/hmj/1150997947. · Zbl 1048.34048
[15] B. Madhubabu, N. Sreedhar, and K.R Prasad, The unique solution to the differential equations of the fourth order with non-homogenous boundary conditions, J. Adv. Appl. Comput. Math., 9:193-203, 2022, doi:10.15377/2409-5761.2022.09.15.
[16] Roman, S., Linear differential equation with additional conditions and formula for green’s function, Math. Model. Anal., 16, 3, 401-417, 2011 · Zbl 1238.34049 · doi:10.3846/13926292.2011.602125
[17] Roman, S.; Štikonas, A., Third-order linear differential equation with three additional conditions and formula for Green’s function, Lith. Math. J., 50, 4, 426-446, 2010 · Zbl 1284.34026 · doi:10.1007/s10986-010-9097-x
[18] Rus, IA, On a fixed point theorem of maia, Studia Univ, Babeş-Bolyai, Math., 22, 40-42, 1977 · Zbl 0374.54039
[19] R.R. Sankar, N. Sreedhar, and K.R. Prasad, Existence results for fourth order non-homogenous three-point boundary value problems, Contemp. Math., 2(2):162-172, 2021, doi:10.37256/cm.222021780.
[20] Smirnov, S., Green’s function and existence of solutions for a third order three-point boundary value problem, Math. Model. Anal., 24, 2, 171-178, 2019 · Zbl 1469.34040 · doi:10.3846/mma.2019.012
[21] Smirnov, S., Green’s function and existence of solutions for a third order boundary value problem involving integral condition, Lith. Math. J., 62, 4, 509-518, 2022 · Zbl 1520.34019 · doi:10.1007/s10986-022-09576-7
[22] N. Sreedhar, B. Madhubabu, and K.R. Prasad, Existence results for differential equations of fourth order with nonhomogenous boundary conditions, Contemp. Math., 4(1):118-131, 2023, doi:10.37256/cm.4120232206.
[23] Sun, Y., Positive solutions for third order three-point non-homogeneous boundary value problems, Appl. Math. Lett., 22, 1, 45-51, 2009 · Zbl 1163.34313 · doi:10.1016/j.aml.2008.02.002
[24] Sun, Y.; Zhu, C., Existence of positive solutions for singular fourth order three point boundary value problems, Adv. Difference Equ., 2013, 51, 1-13, 2013 · Zbl 1380.34044 · doi:10.1186/1687-1847-2013-51
[25] Štikonas, A.; Roman, S., Green’s function for discrete mth-order problems, Lith. Math. J., 52, 3, 334-351, 2012 · Zbl 1264.39008 · doi:10.1007/s10986-012-9177-1
[26] Tisdell, CC, Rethinking pedagogy for second order differential equations: A simplified approach to understanding well posed problems, Int. J. Math. Educ. Sci. Technol., 48, 5, 794-801, 2017 · Zbl 1397.97034 · doi:10.1080/0020739X.2017.1285062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.