×

A boundary value problem on the semi-axis for an ordinary differential equation with a fractional Caputo derivative. (Russian. English summary) Zbl 1536.34029

Summary: The paper considers the unique solvability of a boundary value problem on the semiaxis for a higher-order ordinary differential equation with a fractional Caputo derivative and constant coefficients in the class of bounded functions, where the order of the fractional Caputo derivative lies in the interval \((0, 1)\). Higher orders of the fractional derivative are obtained by composing fractional Caputo derivatives. A special case of the fractional Caputo derivative for integer orders of the derivative coincides with the classical concept of the derivative and the problem under consideration becomes a classical boundary value problem on the half-axis for a higher-order ordinary differential equation. For the equation under consideration, a fundamental system of solutions in the class of bounded functions is constructed. Conditions of the Lopatinsky type for boundary operators are obtained under which the boundary value problem is uniquely solvable in the class of bounded functions.

MSC:

34B40 Boundary value problems on infinite intervals for ordinary differential equations
34A08 Fractional ordinary differential equations
34C11 Growth and boundedness of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Физматлит, 2009. · Zbl 1378.34001
[2] Понтрягин Л. С. Обыкновенные дифференциальные уравнения. М.: Наука, 1970.
[3] Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.
[4] Демиденко Г. В., Успенский С. В. Уравнения и системы, не разрешенные относительно старшей производной. Новосибирск: Науч. кн., 1998.
[5] Oldham K. B., Spanier J. The fractional calculus. New York: Acad. Press, 1974. · Zbl 0428.26004
[6] Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. · Zbl 0617.26004
[7] Podlubny I. Fractional differential equations. San Diego: Acad. Press, 1999. · Zbl 0918.34010
[8] Нахушев А. М. Дробное исчисление и его применение. М.: Физматлит, 2003.
[9] Псху А. В. Уравнения в частных производных дробного порядка. М.: Наука, 2005. · Zbl 1193.35245
[10] Мамчуев М. О. Краевые задачи для уравнений и систем уравнений с частными произ-водными дробного порядка. Нальчик: Изд-во КБНЦ РАН, 2013.
[11] Caputo M. Linear models of dissipation whose Q is almost frequency independent // Ann. Geofis. 1966. V. 19. P. 383-393.
[12] Марзан С. А. Нелинейное дифференциальное уравнение дробного порядка с дробной производной Капуто в пространстве непрерывных функций // Тр. Ин-та математики НАН Беларуси. Минск, 2004. Т. 12, № 2. С. 99-103.
[13] Kilbas A. A., Marzan S. A. Cauchy problem for differential equation with Caputo derivative // Fract. Calc. Appl. Anal. 2004. V. 7, N 3. P. 297-321. · Zbl 1114.34005
[14] Kilbas A. A. New trends on fractional integral and differential equations // Тр. геометри-ческого семинара. Казанский гос. ун-т. Уч. зап. Сер. физ.-мат. науки. 2005. Т. 147, № 1. С. 72-106. · Zbl 1208.45001
[15] Gomoyunov M. I. On representation formulas for solutions of linear differential equations with Caputo fractional derivatives // Fractional Calc. Appl. Anal. 2020. V. 23, N 4. P.1141-1160. https://doi.org/10.1515/fca-2020-0058. · Zbl 1488.34036 · doi:10.1515/fca-2020-0058
[16] Atanackovic T., Dolicanin D., Pilipovic S., Stankovic B. Cauchy problems for some classes of linear fractional differential equations // Fract. Calc. Appl. Anal. 2014. V. 17, N 4. P. 1039-1059. DOI: 10.2478/s13540-014-0213-1. · Zbl 1312.34006 · doi:10.2478/s13540-014-0213-1
[17] Bonilla B., Rivero M., Trujillo J. J. On systems of linear fractional differential equations with constant coefficients // Appl. Math. Comput. 2007. V. 187, N 1. 68?78. DOI: 10.1016/j.amc. 2006.08.104. · Zbl 1121.34006 · doi:10.1016/j.amc.2006.08.104
[18] Chikriy A. A., Matichin I. I. Presentation of solutions of linear systems with fractional deriva-tives in the sense of Riemann-Liouville, Caputo and Miller-Ross // J. Autom. Inf. Sci. 2008. V. 40, N 6. P. 1-11. DOI: 10.1615/JAutomatInfScien.v40.i6.10. · doi:10.1615/JAutomatInfScien.v40.i6.10
[19] Diethelm K. The analysis of fractional differential equations. An application-oriented exposi-tion using differential operators of Caputo type. Berlin: Springer-Verl., 2010. (Lect. Notes Math.; V. 2004). · Zbl 1215.34001
[20] Duan J. A generalization of the Mittag-Leffler function and solution of system of fractional differential equations // Adv. Differ. Equ. 2018. Art. no. 239. DOI: 10.1186/s13662-018-1693-9. · Zbl 1446.33013 · doi:10.1186/s13662-018-1693-9
[21] Idczak D., Kamocki R. On the existence and uniqueness and formula for the solution or R-L fractional Cauchy problem in R n // Fract. Calc. Appl. Anal. 2011. V. 14, N 4. P. 538-553. DOI: 10.2478/s13540-011-0033-5. · Zbl 1273.34010 · doi:10.2478/s13540-011-0033-5
[22] Ahmad B., Henderson J., Luca R. Boundary value problems for fractional differential equa-tions and systems. Hackensack, NJ: World Sci., 2021 (Trends Abstract Appl. Anal.; V. 9). · Zbl 1460.34003
[23] Поступила в редакцию 15 февраля 2022 г. После доработки 2 мая 2023 г. Принята к публикации 29 мая 2023 г.
[24] Егоров Иван Егорович Научно-исследовательский институт математики СВФУ, ул. Кулаковского, 48, Якутск 677000 ivanegorov51@mail.ru Федотов Егор Дмитриевич Якутское отделение Регионального научно-образовательного математического центра Дальневосточный центр математических исследований ул. Белинского, 58, Якутск 677891
[25] Petrovsky I. G., Lectures on the Theory of Ordinary Differential Equations [in Russian], Fizmatlit, Moscow (2009) · Zbl 1378.34001
[26] Pontryagin L. S., Ordinary Differential Equations [in Russian], Nauka, Moscow (1970). · Zbl 0238.90087
[27] Hartman F., Ordinary Differential Equations [in Russian], Mir, Moscow (1970). · Zbl 0214.09101
[28] Demidenko G. V. and Uspensky S. V., Equations and Systems That Are Not Resolved with Respect to the Highest Derivative [in Russian], Nauchn. Kniga, Novosibirsk (1998).
[29] Oldham K. B. and Spanier J., The Fractional Calculus, Acad. Press, New York (1974). · Zbl 0428.26004
[30] Samko S. G., Kilbas A. A., and Marichev O.I. , Fractional Integrals and Derivatives and Some of Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987). · Zbl 0617.26004
[31] Podlubny I., Fractional Differential Equations, Acad. Press, San Diego (1999). · Zbl 0918.34010
[32] Nakhushev A. M., Fractional Calculus and Its Applications [in Russian], Fizmatlit, Moscow (2003). · Zbl 1066.26005
[33] Pskhu A. V., Equations in Partial Derivatives of Fractional Order [in Russian], Nauka, Moscow (2005). · Zbl 1193.35245
[34] Mamchuev M. O., Boundary Value Problems for Equations and Systems of Equations with Partial Derivatives of Fractional Order [in Russian], Izdat. KBNTs RAN, Nalchik (2013).
[35] Caputo M., “Linear models of dissipation whose Q is almost frequency independent,” Ann. Geofis., 19, 383-393 (1966).
[36] Marzan S. A., “Nonlinear differential equation of fractional order with fractional Caputo derivative in the space of continuous functions,” Tr. Inst. Mat. NAN Belarusi, Minsk, 12, No. 2, 99-103 (2004).
[37] Kilbas A. A and Marzan S. A., “Cauchy problem for differential equation with Caputo deriva-tive,” Fract. Calc. Appl. Anal., 7, No. 3, 297-321 (2004). · Zbl 1114.34005
[38] Kilbas A. A., “New trends on fractional integral and differential equations,” Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki, 147, No. 1, 72-106 (2005). · Zbl 1208.45001
[39] Gomoyunov M. I., “On representation formulas for solutions of linear differential equations with Caputo fractional derivatives,” Fract. Calc. Appl. Anal., 23, No. 4, 1141-1160 (2020). · Zbl 1488.34036
[40] Atanackovic T., Dolicanin D., Pilipovic S., and Stankovic B., “Cauchy problems for some classes of linear fractional differential equations,” Fract. Calc. Appl. Anal., 17, No. 4, 1039-1059 (2014). · Zbl 1312.34006
[41] Bonilla B., Rivero M., and Trujillo J. J., “On systems of linear fractional differential equations with constant coefficients,” Appl. Math. Comput., 187, No. 1, 68-78 (2007). · Zbl 1121.34006
[42] Chikriy A. A. and Matichin I. I., “Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross,” J. Autom. Inf. Sci., 40, No. 6, 1-11 (2008).
[43] Diethelm K., The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin (2010) (Lect. Notes Math.; vol. 2004). · Zbl 1215.34001
[44] Duan J., “A generalization of the Mittag-Leffler function and solution of system of fractional differential equations,” Adv. Differ. Equ., Article No. 239 (2018). · Zbl 1446.33013
[45] Idczak D. and Kamocki R., “On the existence and uniqueness and formula for the solution or R-L fractional Cauchy problem in R n ,” Fract. Calc. Appl. Anal., 14, No. 4, 538-553 (2011). · Zbl 1273.34010
[46] Ahmad B., Henderson J., and Luca R., Boundary Value Problems for Fractional Differential Equations and Systems, World Sci., Hackensack, NJ (2021) (Trends Abstract Appl. Anal.; vol. 9). · Zbl 1460.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.