×

Sharp bounds associated with the Zalcman conjecture for the initial coefficients and second Hankel determinants for certain subclass of analytic functions. (English) Zbl 1535.30046

Summary: In this paper, we obtain sharp bounds in the Zalcman conjecture for the initial coefficients, the second Hankel determinant \(H_{2,2}(f ) = a_2 a_4 - a^2_3\) and an upper bound for the second Hankel determinant \(H_{2,3}(f ) = a_3 a_5 - a^2_4\) for the functions belonging to a certain subclass of analytic functions. The practical tools applied in the derivation of our main results are the coefficient inequalities of the Carathéodory class \(\mathcal{P}\).

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
Full Text: DOI

References:

[1] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions,” J. Lond. Math. Soc., 41, 111-122 (1966). · Zbl 0138.29801
[2] Janteng A., Halim S. A. and Darus M., “Hankel determinant for starlike and convex functions,” Int. J. Math. Anal., 1, No. 13, 619-625 (2007). · Zbl 1137.30308
[3] Janteng A., Halim S. A. and Darus M., “Coefficient inequality for a function whose derivative has a positive real part,” J. Inequal. Pure Appl. Math., 7, No. 2, 1-5 (2006). · Zbl 1134.30310
[4] Gurusamy P. and Jayasankar R., “The estimates for second Hankel determinant of Ma-Minda starlike and convex functions,” AIP Conf. Proc., 2282, 020039 (2020).
[5] Orhan H., Magesh N., and Balaji V. K., “Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials,” Asian-Eur. J. Math., 12, No. 2, Article ID 1950017 (2019). · Zbl 1414.30017
[6] Sim Y. J., Thomas D. K., and Zaprawa P., “The second Hankel determinant for starlike and convex functions of order alpha,” Complex Variables, Elliptic Equ., 67, No. 10, 2423-2443 (2021). · Zbl 1502.30062
[7] Sokol J. and Thomas D. K., “The second Hankel determinant for alpha-convex functions,” Lith. Math. J., 58, No. 2, 212-218 (2018). · Zbl 1401.30010
[8] Zaprawa P., “Second Hankel determinants for the class of typically real functions,” Abstr. Appl. Anal., 2016, Article ID 3792367 (2016). · Zbl 1470.30023
[9] Zaprawa P., “On Hankel determinant H 2 (3) for univalent functions,” Result. Math., 73, No. 3 (2018). · Zbl 1401.30013
[10] Hern A. L. P., Janteng A., Omar R., “Hankel determinant H 2 (3) for certain subclasses of univalent functions,” Math. Stat., 8, No. 5, 566-569 (2020).
[11] Vamshee Krishna D. and RamReddy T., “Coefficient inequality for certain p-valent analytic functions,” Rocky Mt. J. Math., 44, No. 6, 1941-1959 (2014). · Zbl 1309.30013
[12] Krushkal S. L., “Univalent functions and holomorphic motions,” J. Anal. Math., 66, 253-275 (1995). · Zbl 0846.30015
[13] Krushkal S. L., “Proof of the Zalcman conjecture for initial coefficients,” Georgian Math. J., 17, 663-681 (2010). · Zbl 1211.30035
[14] Brown J. E. and Tsao A., “Proof of the Zalcman conjecture for starlike and typically real functions,” Math. Z., 191, 467-474 (1986). · Zbl 0541.30004
[15] Abu Muhanna Y., Li L., and Ponnusamy S., “Extremal problems on the class of convex functions of order −1/2,” Arch. Math. (Basel), 103, No. 6, 461-471 (2014). · Zbl 1303.30015
[16] Ma W., “The Zalcman conjecture for close-to-convex functions,” Proc. Amer. Math. Soc., 104, 741-744 (1988). · Zbl 0696.30018
[17] Ma W., “Generalized Zalcman conjecture for starlike and typically real functions,” J. Math. AnaL. Appl., 234, 328-339 (1999). · Zbl 0936.30012
[18] Bansal D. and Sokol J., “Zalcman conjecture for some subclass of analytic functions,” J. Frac-tional Calc., 8, No. 1, 1-5 (2017). · Zbl 1488.30042
[19] Ravichandran V. and Verma S., “Generalized Zalcman conjecture for some classes of analytic functions,” J. Math. Anal. Appl., 450, No. 1, 592-605 (2017). · Zbl 1359.30028
[20] Vamshee Krishna D. and Shalini D., “Certain coefficient inequalities associated with Hankel determinant for a specific subfamily of holomorphic mappings,” Publ. Inst. Math. (Beograd) (N. S.), 111, No. 125, 127-132 (2022).
[21] Sakaguchi K., “On a certain univalent mapping,” J. Math. Soc. Japan, 11, 72-75 (1959). · Zbl 0085.29602
[22] Das R. N. and Singh P., “On subclass of schlicht mappings,” Ind. J. Pure Appl. Math., 8, 864-872 (1977). · Zbl 0374.30008
[23] Duren P. L., Univalent Functions, Springer, New York (1983) (Grundlehren Math. Wiss.; vol. 259). · Zbl 0514.30001
[24] Pommerenke Ch., Univalent Functions, Vandenhoeck und Ruprecht, Göttingen (1975).
[25] Hayami T. and Owa S., “Generalized Hankel determinant for certain classes,” Int. J. Math. Anal., 4, 2573-2585 (2010). · Zbl 1226.30015
[26] Livingston A. E., “The coefficients of multivalent close-to-convex functions,” Proc. Amer. Math. Soc., 21, No. 3, 545-552 (1969). · Zbl 0186.39901
[27] Libera R. J. and Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in P ,” Proc. Amer. Math. Soc., 87, 251-257 (1983). · Zbl 0488.30010
[28] RamReddy T. and Vamshee Krishna D., “Hankel determinant for starlike and convex functions with respect to symmetric points,” J. Ind. Math. Soc. (N. S.), 79, No. 1-4, 161-171 (2012). · Zbl 1267.30053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.