×

On the Riemann problem for the foam displacement in porous media with linear adsorption. (English) Zbl 1537.35234

Summary: Motivated by the foam displacement in porous media with linear adsorption, we extended the existing framework for two-phase flow containing an active tracer described by a non-strictly hyperbolic system of conservation laws. We solved the global Riemann problem by presenting possible wave sequences that composed this solution. Although the problems are well-posed for all Riemann data, there is a parameter region where the solution lacks structural stability. We verified that the model implemented on the most used commercial solver for geoscience, CMG-STARS, describing foam displacement in porous media with adsorption, satisfies the hypotheses to apply the developed theory, resulting in structural stability loss for some parameter regions.

MSC:

35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35Q35 PDEs in connection with fluid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
76S05 Flows in porous media; filtration; seepage

References:

[1] Azevedo, A., de Souza, A., Furtado, F., and Marchesin, D., Uniqueness of the Riemann solution for three-phase flow in a porous medium, SIAM J. Appl. Math., 74 (2014), pp. 1967-1997. · Zbl 1325.35157
[2] Azevedo, A. V., Marchesin, D., Plohr, B. J., and Zumbrun, K., Nonuniqueness of solutions of Riemann problems, Z. Angew. Math. Phys., 47 (1996), pp. 977-998. · Zbl 0880.35068
[3] Barkve, T., The Riemann problem for a nonstrictly hyperbolic system modeling nonisothermal, two-phase flow in a porous medium, SIAM J. Appl. Math., 49 (1989), pp. 784-798. · Zbl 0686.35076
[4] Brooks, R. H. and Corey, A. T., Properties of porous media affecting fluid flow, J. Irrigation Drainage Division, 92 (1966), pp. 61-90, doi:10.1061/JRCEA4.0000425.
[5] Buckley, S. E. and Leverett, M. C., Mechanism of fluid displacement in sands, Trans. AIME, 146 (1942), doi:10.2118/942107-G.
[6] Computer Modeling Group Ltd, STARS User Manual, Ver. 2019.10, Computer Modeling Group Ltd, Houston, TX, 2019.
[7] Da-Mota, J. C., The Riemann problem for a simple thermal model for two phase flow in porous media, Mat. Apl. Comput., 11 (1992), pp. 117-145. · Zbl 0803.76084
[8] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Vol. 3, Springer-Verlag, Berlin, 2005. · Zbl 1078.35001
[9] de Lima, N. M., Microscale Analysis of Foam Formation and Surfactant-Alternating-Gas Injection in Porous Media Micromodels, Ph.D. thesis, Pontifical Catholic University of Rio de Janeiro, 2021.
[10] Furtado, F., Structural Stability of Nonlinear Waves for Conservation Laws, Ph.D. thesis, New York University, 1989.
[11] Hematpur, H., Mahmood, S. M., Nasr, N. H., and Elraies, K. A., Foam flow in porous media: Concepts, models and challenges, J. Nat. Gas Sci. Eng., 53 (2018), pp. 163-180, doi:10.1016/j.jngse.2018.02.017.
[12] Isaacson, E., Marchesin, D., Plohr, B., and Temple, B., Multiphase flow models with singular Riemann problems, Comput. Appl. Math., 11 (1992), pp. 147-166. · Zbl 0803.76091
[13] Isaacson, E. L., Global Solution of the Riemann Problem for a Non-Strictly Hyperbolic System of Conservation Laws Arising in Enhanced Oil Recovery, Technical report, Rockefeller University, 1989.
[14] Isaacson, E. L. and Temple, J. B., Analysis of a singular hyperbolic system of conservation laws, J. Differential Equations, 65 (1986), pp. 250-268. · Zbl 0612.35085
[15] Issacson, E. L., Marchesin, D., Frederico Palmeira, C., and Plohr, B. J., A global formalism for nonlinear waves in conservation laws, Comm. Math. Phys., 146 (1992), pp. 505-552. · Zbl 0786.76048
[16] Johansen, T. and Winther, R., The solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding, SIAM J. Math. Anal., 19 (1988), pp. 541-566, doi:10.1137/0519039. · Zbl 0658.35061
[17] Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., and Patil, S., Surfactant adsorption isotherms: A review, ACS Omega, 6 (2021), pp. 32342-32348.
[18] Keyfitz, B. L. and Kranzer, H. C., A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ration. Mech. Anal., 72 (1980), pp. 219-241. · Zbl 0434.73019
[19] Lambert, W., Alvarez, A., Ledoino, I., Tadeu, D., Marchesin, D., and Bruining, J., Mathematics and numerics for balance partial differential-algebraic equations (PDAEs), J. Sci. Comput., 84 (2020), pp. 1-56, doi:10.1007/s10915-020-01279-w. · Zbl 1440.76146
[20] Lax, P. D., Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), pp. 537-566, doi:10.1002/cpa.3160100406. · Zbl 0081.08803
[21] LeVeque, R. J., Numerical Methods for Conservation Laws, Birkhäuser-Verlag, Basel, Switzerland, 1990. · Zbl 0723.65067
[22] Liu, T. P., Existence and uniqueness theorems for Riemann problems, Trans. Amer. Math. Soc., 212 (1975), pp. 375-382. · Zbl 0317.35062
[23] Mehrabi, M., Sepehrnoori, K., and Delshad, M., Displacement theory of low-tension gas flooding, Transp. Porous Media, 142 (2022), pp. 475-491, doi:10.1007/s11242-022-01753-z.
[24] Norris, U. L., Core-Scale Simulation of Polymer Flow through Porous Media, Master’s thesis, University of Stavanger, 2011.
[25] Petrova, Y., Plohr, B. J., and Marchesin, D., Vanishing Adsorption Admissibility Criterion for Contact Discontinuities in the Polymer Model, preprint, arXiv:2211.10326, 2022.
[26] Schecter, S., Marchesin, D., and Plohr, B. J., Structurally stable riemann solutions, J. Differential Equations, 126 (1996), pp. 303-354. · Zbl 0869.35062
[27] Smoller, J., Shock Waves and Reaction-Diffusion Equations, Vol. 258, Springer-Verlag, Berlin, 1994, doi:10.1007/978-1-4612-0873-0. · Zbl 0807.35002
[28] Tang, J., Castañeda, P., Marchesin, D., and Rossen, W. R., Three-phase fractional-flow theory of foam-oil displacement in porous media with multiple steady states, Water Resour. Res., (2019), doi:10.1029/2019WR025264.
[29] Temple, B., Global solution of the cauchy problem for a class of \(2 \text{\times} 2\) nonstrictly hyperbolic conservation laws, Adv. Appl. Math., 3 (1982), pp. 335-375. · Zbl 0508.76107
[30] Thorat, R. and Bruining, H., Foam flow experiments. I. Estimation of the bubble generation-coalescence function, Transp. Porous Media, 112 (2016), pp. 53-76.
[31] Tunnish, A., Shirif, E., and Henni, A., History matching of experimental and CMG-STARS results, J. Pet. Explor. Prod. Technol., 9 (2019), pp. 341-351.
[32] Valdez, A. R., Rocha, B. M., Pérez-Gramatges, A., Façanha, J., de Souza, A., Chapiro, G., and dos Santos, R. W., Foam assisted water-gas flow parameters: From core-flood experiment to uncertainty quantification and sensitivity analysis, Transp. Porous Media, (2021), doi:10.1007/s11242-021-01550-0.
[33] Zeng, Y., Ma, K., Farajzadeh, R., Puerto, M., Biswal, S. L., and Hirasaki, G. J., Effect of surfactant partitioning between gaseous phase and aqueous phase on \(CO_2\) foam transport for enhanced oil recovery, Transp. Porous Media, 114 (2016), pp. 777-793.
[34] Zhang, Z. F., Freedman, V. L., and Zhong, L., Foam Transport in Porous Media—A Review, Technical report, Pacific Northwest National Laboratory, Richland, WA, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.