×

A regularity criterion to a mathematical model in superfluidity in \(\mathbb{R}^n\). (English) Zbl 1534.35383

Summary: In this work, we prove a regularity criterion to a mathematical model in superfluidity in \(\mathbb{R}^n\) for any \(n\geq 3\).

MSC:

35Q56 Ginzburg-Landau equations
82D55 Statistical mechanics of superconductors
35B65 Smoothness and regularity of solutions to PDEs
35A09 Classical solutions to PDEs
35D35 Strong solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Berti V. and Fabrizio M., Existence and uniqueness for a mathematical model in superfluidity. Mathematical Methods in the Applied Sciences 31 (2008), 1441-1459. · Zbl 1146.35048
[2] Berti A., Berti V. and Bochicchio I., Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete and Continuous Dynam-ical Systems S 4 (2011), 247-271. · Zbl 1217.35033
[3] Chen Z. M., Elliott C. and Tang Q., Justification of a two-dimensional evo-lutionary Ginzburg-Landau superconductivity model. RAIRO Model Math. Anal. Numer. 32 (1998), 25-50. · Zbl 0905.35084
[4] Chen Z. M., Hoffmann K. H. and Liang J., On a nonstationary Ginzburg-Landau superconductivity model. Math. Meth. Appl. Sci. 16 (1993), 855-875. · Zbl 0817.35111
[5] Du Q., Global existence and uniqueness of solutions of the time dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 52 (1994), 1-17. · Zbl 0843.35019
[6] Fan J. and Jiang S., Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity. Appl. Math. Lett. 16 (2003), 435-440. · Zbl 1055.35109
[7] Fan J. and Ozawa T., Global well-posedness of weak solutions to the time-dependent Ginzburg-Landau model for superconductivity. Taiwanese J. Math. 22 (2018), 851-858. · Zbl 1404.35425
[8] Fan J., Samet B. and Zhou Y., Uniform regularity for a 3D time-dependent Ginzburg-Landau model in superconductivity. Computers and Math. with Appl. 75 (2018), 3244-3248. · Zbl 1409.82022
[9] Fan J., Gao H. and Guo B., Uniqueness of weak solutions to the 3D Ginzburg-Landau superconductivity model. Int. Math. Res. Notices 2015 (2015), 1239-1246. · Zbl 1317.35248
[10] Fan J. and Ni G., Global existence and uniqueness of weak solutions in critical spaces for a mathematical model in superfluidity. Math. Meth. Appl. Sci. 38 (2015), 1673-1681. · Zbl 1322.35056
[11] Fan J., Nakamura G. and Tang T., The time-dependent Ginzburg-Landau-Maxwell system in R n , submit.
[12] Gala S., Ragusa M. A., Sawano Y. and Tanaka H., Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces. Applicable Analysis 93 (2014), 356-368. · Zbl 1303.76129
[13] Kato T. and Ponce G., Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41 (1988), 891-907. · Zbl 0671.35066
[14] Tang Q., On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux. Comm. PDE 20 (1995), 1-36. · Zbl 0833.35132
[15] Tang Q. and Wang S., Time dependent Ginzburg-Landau equation of su-perconductivity. Physica D 88 (1995), 139-166. · Zbl 0900.35371
[16] Xu L., Huang J. H. and Ma Q. Z., Random exponential attractor for stochas-tic non-autonomous suspension bridge equation with additive white noise, Discrete and Continuous Dynamical Systems -series B, doi:10.3934/dcdsb. 2021318. · Zbl 1505.37094 · doi:10.3934/dcdsb.2021318
[17] Yuan J. B., Zhang S. X., Xie Y. Q. and Zhang J. W., Exponential attrac-tors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. AIMS Mathematics 6 (2021), 11778-11795. Jishan Fan Department of Applied Mathematics Nanjing Forestry University Nanjing 210037, P.R. China E-mail: fanjishan@njfu.edu.cn Gen Nakamura Department of Mathematics Hokkaido University Sapporo 060-0810, Japan E-mail: nakamuragenn@gmail.com Tong Tang (Corresponding author) School of Mathematical Science Yangzhou University Yangzhou 225002, P.R. China E-mail: tt0507010156@126.com · Zbl 1509.35065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.