×

Buckling of a clamped strip-like beam with a linear pre-stress distribution. (English) Zbl 07809737

Summary: A thin linear elastic strip is clamped at both ends and subjected to a linear stress distribution across its width. We use Kirchhoff beam theory to study this problem. If displacements out of the strips own plane are prohibited, the straight configuration remains stable as long as the compression is not too high. With the three-dimensional spatial description of the rod theory, we find possible buckling modes even in the case of average tensile stresses in the beam. Comparison with shell and beam finite elements shows excellent agreement with the analytical investigation, also with respect to the supercritical behavior.
© 2020 The Authors. ZAMM - Journal of Applied Mathematics and Mechanics Published by Wiley-VCH Verlag GmbH & Co. KGaA

MSC:

74-XX Mechanics of deformable solids
00Axx General and miscellaneous specific topics
74Kxx Thin bodies, structures

References:

[1] D. C.Tran, N.Tardif, H.El Khaloui, A.Limam, Thin‐Walled Struct.2017, 113, 129.
[2] Yu.Vetyukov, P. G.Gruber, M.Krommer, J.Gerstmayr, I.Gafur, G.Winter, Int. J. Numer. Methods Eng.2016, 109, 1371.
[3] Y.Kiani, M. R.Eslami, Int. J. Mech. Mater. Des.2010, 6, 229.
[4] M.Reza Eslami, Buckling and Postbuckling of Beams, Plates, and Shells, Springer International Publishing2018. · Zbl 1405.74002
[5] X.Song, S.‐R.Li, Mech. Res. Commun.2007, 34, 164. · Zbl 1192.74136
[6] R. F.Barron, B. R.Barron, Design for Thermal Stresses, John Wiley & Sons, Inc.2011.
[7] G.Ioannidis, O.Mahrenholtz, A. N.Kounadis, Arch. Appl. Mech.1993, 63, 151. · Zbl 0771.73026
[8] Yu.Vetyukov, C.Schmidrathner, Acta Mech.2019, 230, 4061. · Zbl 1431.74070
[9] D.Manta, R.Gonçalves, Comput. Struct.2016, 177, 192.
[10] Y.Vetyukov, Nonlinear Mechanics of Thin‐Walled Structures. Asymptotics, Direct Approach and Numerical Analysis, Vol. Foundation of Engineering Mechanics, Springer, Vienna2014, https://doi.org/10.1007/978‐3‐7091‐1777‐4. · Zbl 1349.74006 · doi:10.1007/978‐3‐7091‐1777‐4
[11] C.Schmidrathner, Y.Vetyukov, in Advanced Structured Materials (Eds: H.Altenbach (ed.), H.Irschik (ed.), V.Matveenko (ed.)), Springer International Publishing, 2019, pp. 227-242.
[12] I.Romero, Comput. Mech.2004, 34, 121. · Zbl 1138.74406
[13] M. A.Crisfield, G.Jelenić, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci.1999, 455, 1125. · Zbl 0926.74062
[14] C.Meier, A.Popp, W. A.Wall, Archives of Computational Methods in Engineering2017, 26, 163.
[15] P. G.Gruber, K.Nachbagauer, Y.Vetyukov, J.Gerstmayr, Mech. Sci.2013, 4, 279.
[16] Yu.Vetyukov, ZAMM ‐ J. Appl. Math. Mech. / Z. Angew. Math. Mech.2012, 94, 150.
[17] Y. M.Vetyukov, J. Elast.2009, 98, 141.
[18] V. V.Eliseev, J. Appl. Math. Mech.1988, 52, 493. · Zbl 0708.73039
[19] R.Sampaio, M. T.Piovan, G. V.Lozano, Mech. Res. Commun.2007, 34, 497. · Zbl 1192.74185
[20] Y.Vetyukov, in Dynamics and Control of Advanced Structures and Machines (Eds: H.Irschik (ed.), A.Belyaev (ed.), M.Krommer (ed.)), Springer International Publishing, 2016, pp. 23-32.
[21] W.Lacarbonara, H.Yabuno, Int. J. Solids Struct.2006, 43, 5066. · Zbl 1120.74580
[22] H.Parkus, Mechanik der festen Körper (Mechanics of Solids), Springer2005.
[23] C.Schmidrathner, Acta Mech.2019, 230, 4035.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.