×

Multiply connected wandering domains of meromorphic functions: the pursuit of uniform internal dynamics. (English) Zbl 1543.37053

The author shows that if \(U\) is a wandering domain of a meromorphic function \(f\) such that there exists a point \(z_0 \in U\) and a neighborhood \(V \subset U\) of \(z_0\) where one of the following properties holds for every \(w \in V\):
(a) \(d_{U_n}(f^n (w), f^n(z_0)) \to 0\) (\(V\) is contracting relative to \(z_0\));
(b) \(d_{U_n}(f^n(w), f^(z_0))\) decreases to a limit \(c(z_0, w) > 0\) without ever reaching it, except for a discrete (in \(V\)) set of points for which \(f^k(w) = f^k(z_0)\) for some \(k \in \mathbb{N}\) (\(V\) is semicontracting relative to \(z_0\));
(c) There exists \(N \in \mathbb{N}\) (uniform over compact subsets of \(V\)) such that \(d_{U_n}(f^n(w), f^n(z_0)) = c(z_0, w) > 0\) for \(n \geq \mathbb{N}\) (\(V\) is locally eventually isometric relative to \(z_0\));
then the same property holds for every \(w \in U\).
As an application of the above result, the author constructs an example of a meromorphic function, by using quasiconformal surgery, with a semi-contracting infinitely connected wandering domain. The example is stated as follows: there exists a meromorphic function \(f\) with an infinitely connected wandering domain \(V\) and a nonempty open subset \(V' \subset V\) such that, for \(z_0 \in V'\), \(V\) is semicontracting relative to \(z_0\).

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F31 Quasiconformal methods in holomorphic dynamics; quasiconformal dynamics
37F20 Combinatorics and topology in relation with holomorphic dynamical systems
30D20 Entire functions of one complex variable (general theory)

Citations:

Zbl 1540.37064

References:

[1] Ahlfors, L. V.. Complex Analysis, 3rd edn. McGraw-Hill, New York, 1979. · Zbl 0395.30001
[2] Astala, K., Iwaniec, T. and Martin, G.. Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton, NJ, 2009. · Zbl 1182.30001
[3] Beardon, A. F., Carne, T. K., Minda, D. and Ng, T. W.. Random iteration of analytic maps. Ergod. Th. & Dynam. Sys.24 (2004), 659-675. · Zbl 1055.37053
[4] Beardon, A. F. and Minda, D.. The hyperbolic metric and geometric function theory. Proceedings of the International Workshop on Quasiconformal Mappings and their Applications. Eds. Ponnusamy, S., Sugawa, T. and Vuorinen, M.. Alpha Science International, New Delhi, 2006.
[5] Beardon, A. F. and Minda, D. M.. Normal families: a geometric perspective. Comput. Methods Funct. Theory14 (2014), 331-355. · Zbl 1307.30075
[6] Benedetti, R. and Petronio, C.. Lectures on Hyperbolic Geometry. Springer, Berlin, 1992. · Zbl 0768.51018
[7] Benini, A. M., Evdoridou, V., Fagella, N., Rippon, P. J. and Stallard, G. M.. Classifying simply connected wandering domains. Math. Ann.383 (2022), 1127-1178. · Zbl 1504.37055
[8] Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.)29 (1993), 151-188. · Zbl 0791.30018
[9] Bergweiler, W., Rippon, P. J. and Stallard, G. M.. Multiply connected wandering domains of entire functions. Proc. Lond. Math. Soc. (3)107 (2013), 1261-1301. · Zbl 1325.37026
[10] Bojarski, B., Gutlyanskii, V., Martio, O. and Ryanazov, V.. Infinitesimal Geometry of Quasiconformal and Bi-Lipschitz mappings in the Plane. European Mathematical Society, Zurich, 2013. · Zbl 1276.30002
[11] Branner, B. and Fagella, N.. Quasiconformal Surgery in Holomorphic Dynamics. Cambridge University Press, Cambridge, 2014. · Zbl 1319.37003
[12] Canary, R. D., Epstein, D. B. A. and Green, P. L.. Notes on notes of Thurston. Fundamentals of Hyperbolic Manifolds: Selected Expositions. Eds. Canary, R. D., Epstein, D. B. A. and Marden, A.. Cambridge University Press, Cambridge, 2006.
[13] Carleson, L. and Gamelin, T. W.. Complex Dynamics. Springer, New York, 1993. · Zbl 0782.30022
[14] Donaldson, S.. Riemann Surfaces. Oxford University Press, Oxford, 2011. · Zbl 1235.30001
[15] Ferreira, G. R.. Multiply connected wandering domains of meromorphic functions: internal dynamics and connectivity. J. Lond. Math. Soc. (2)106 (2022), 1897-1919. · Zbl 1540.37064
[16] Gehring, F. W. and Osgood, B. G.. Uniform domains and the quasi-hyperbolic metric. J. Anal. Math.36 (1979), 50-74. · Zbl 0449.30012
[17] Hatcher, A.. Algebraic Topology. Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[18] Hayman, W. K.. Meromorphic Functions. Oxford University Press, Oxford, 1964. · Zbl 0115.06203
[19] Hinkkanen, A. and Martin, G.. Quasiregular families bounded in \({L}^p\) and elliptic estimates. J. Geom. Anal.30 (2020), 1627-1636. · Zbl 1436.30014
[20] Hubbard, J. H.. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006. · Zbl 1102.30001
[21] Keen, L. and Lakic, N.. Hyperbolic Geometry from a Local Viewpoint. Cambridge University Press, Cambridge, 2007. · Zbl 1190.30001
[22] Kisaka, M. and Shishikura, M.. On multiply connected wandering domains of entire functions. Transcendental Dynamics and Complex Analysis. Eds. Rippon, P. J. and Stallard, G. M.. Cambridge University Press, Cambridge, 2008, pp. 217-250. · Zbl 1167.30011
[23] Kotus, J., Baker, I. N. and Lü, Y.. Iterates of meromorphic functions II: Examples of wandering domains. J. Lond. Math. Soc. (2)42 (1990), 267-278. · Zbl 0726.30022
[24] Landau, E.. Über die Blochsche Konstante und zwei verwandte Weltkonstanten. Math. Z.30 (1929), 608-634. · JFM 55.0770.03
[25] Matsuzaki, K. and Taniguchi, M.. Hyperbolic Manifolds and Kleinian Groups. Oxford University Press, Oxford, 1998. · Zbl 0892.30035
[26] Milnor, J.. Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton, NJ, 2006. · Zbl 1085.30002
[27] Minda, C. D.. Bloch constants. J. Anal. Math.41 (1982), 54-84. · Zbl 0517.30023
[28] Rickman, S.. Quasiregular Mappings. Springer, Berlin, 1993. · Zbl 0816.30017
[29] Rippon, P. J. and Stallard, G. M.. On multiply connected wandering domains of meromorphic functions. J. Lond. Math. Soc. (2)77 (2008), 405-423. · Zbl 1147.30018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.