×

The spectrum of self-adjoint extensions associated with exceptional Laguerre differential expressions. (English) Zbl 07797571

Summary: Exceptional Laguerre-type differential expressions form an infinite class of Schrödinger operators having rational potentials and one limit-circle endpoint. In this manuscript, the spectrum of all self-adjoint extensions for a general exceptional Laguerre-type differential expression is given in terms of the Darboux transformations which relate the expression to the classical Laguerre differential expression. The spectrum is extracted from an explicit Weyl \(m\)-function, up to a sign.
The construction relies primarily on two tools: boundary triples, which parameterize the self-adjoint extensions and produce the Weyl \(m\)-functions, and manipulations of Maya diagrams and partitions, which classify the seed functions defining the relevant Darboux transforms. Several examples are presented.

MSC:

47-XX Operator theory
34L05 General spectral theory of ordinary differential operators
33D45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
47E05 General theory of ordinary differential operators
47A10 Spectrum, resolvent

References:

[1] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equations. Amer. J. Math. 79 (1957), 597-610 Zbl 0079.10802 MR 88623 · Zbl 0079.10802 · doi:10.2307/2372564
[2] M. J. Atia, L. L. Littlejohn, and J. Stewart, Spectral theory of X 1 -Laguerre polynomials. Adv. Dyn. Syst. Appl. 8 (2013), no. 2, 181-192 MR 3162140 · Zbl 1333.33018 · doi:10.1016/j.jat.2015.11.001
[3] J. Behrndt, S. Hassi, and H. de Snoo, Boundary value problems, Weyl functions, and dif-ferential operators. Monogr. Math. 108, Birkhäuser/Springer, Cham, 2020 Zbl 1457.47001 MR 3971207 · Zbl 1457.47001 · doi:10.1007/978-3-030-36714-5
[4] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 29 (1929), no. 1, 730-736 Zbl 55.0260.01 MR 1545034 · JFM 55.0260.01 · doi:10.1007/BF01180560
[5] R. F. Boisvert, C. W. Clark, H. S. Cohl, D. W. Lozier, M. A. McClain, B. R. Miller, A. B. Olde Daalhuis, F, W. J. Olver, B. V. Saunders, B. I. Schneider (eds.), NIST digi-tal library of mathematical functions. Release 1.0.22 of 2019-03-15 httpsW//dlmf.nist.gov/ visited on 20 November 2023
[6] N. Bonneux and A. B. J. Kuijlaars, Exceptional Laguerre polynomials. Stud. Appl. Math. 141 (2018), no. 4, 547-595 Zbl 1408.33019 MR 3879969 · Zbl 1408.33019 · doi:10.1111/sapm.12204
[7] M. Bush, D. Frymark, and C. Liaw, Singular boundary conditions for Sturm-Liouville operators via perturbation theory. Canad. J. Math. 75 (2023), no. 4, 1110-1146 Zbl 07720708 MR 4620317 · Zbl 07720708 · doi:10.4153/s0008414x22000293
[8] M. M. Crum, Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127 Zbl 0065.31901 MR 72332 · Zbl 0065.31901 · doi:10.1093/qmath/6.1.121
[9] V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value prob-lems for Hermitian operators with gaps. J. Funct. Anal. 95 (1991), no. 1, 1-95 Zbl 0748.47004 MR 1087947 · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[10] A. J. Durán, Exceptional Meixner and Laguerre orthogonal polynomials. J. Approx. The-ory 184 (2014), 176-208 Zbl 1295.33013 MR 3218798 · Zbl 1295.33013 · doi:10.1016/j.jat.2014.05.009
[11] A. J. Durán and M. Pérez, Admissibility condition for exceptional Laguerre polynomials. J. Math. Anal. Appl. 424 (2015), no. 2, 1042-1053 Zbl 1305.33019 MR 3292716 · Zbl 1305.33019 · doi:10.1016/j.jmaa.2014.11.035
[12] D. Frymark, Boundary triples and Weyl m-functions for powers of the Jacobi differential operator. J. Differential Equations 269 (2020), no. 10, 7931-7974 Zbl 1493.34080 MR 4113193 · Zbl 1493.34080 · doi:10.1016/j.jde.2020.05.032
[13] D. Frymark and C. Liaw, Spectral properties of singular Sturm-Liouville operators via boundary triples and perturbation theory. J. Differential Equations 363 (2023), 391-421 Zbl 07684541 MR 4568769 · Zbl 07684541 · doi:10.1016/j.jde.2023.03.022
[14] M. Á. García-Ferrero, D. Gómez-Ullate, and R. Milson, A Bochner type characterization theorem for exceptional orthogonal polynomials. J. Math. Anal. Appl. 472 (2019), no. 1, 584-626 Zbl 1421.42014 MR 3906391 · Zbl 1421.42014 · doi:10.1016/j.jmaa.2018.11.042
[15] F. Gesztesy, L. L. Littlejohn, and R. Nichols, On self-adjoint boundary conditions for singular Sturm-Liouville operators bounded from below. J. Differential Equations 269 (2020), no. 9, 6448-6491 Zbl 1458.34143 MR 4107059 · Zbl 1458.34143 · doi:10.1016/j.jde.2020.05.005
[16] D. Gómez-Ullate, Y. Grandati, and R. Milson, Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and Jacobi polynomials. J. Phys. A 51 (2018), no. 34, article no. 345201 Zbl 1400.33017 MR 3835328 · Zbl 1400.33017 · doi:10.1088/1751-8121/aace4b
[17] D. Gómez-Ullate, Y. Grandati, and R. Milson, Spectral theory of exceptional Hermite polynomials. In From operator theory to orthogonal polynomials, combinatorics, and number theory-a volume in honor of Lance Littlejohn’s 70th birthday, pp. 173-196, Oper. Theory Adv. Appl. 285, Birkhäuser/Springer, Cham, 2021 Zbl 1493.33007 MR 4367467 · Zbl 1493.33007 · doi:10.1007/978-3-030-75425-9_10
[18] D. Gómez-Ullate, N. Kamran, and R. Milson, An extended class of orthogonal polynomi-als defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359 (2009), no. 1, 352-367 Zbl 1183.34033 MR 2542180 · Zbl 1183.34033 · doi:10.1016/j.jmaa.2009.05.052
[19] D. Gómez-Ullate, N. Kamran, and R. Milson, Exceptional orthogonal polynomials and the Darboux transformation. J. Phys. A 43 (2010), no. 43, article no. 434016 Zbl 1202.81036 MR 2727790 · Zbl 1202.81036 · doi:10.1088/1751-8113/43/43/434016
[20] D. Gómez-Ullate, N. Kamran, and R. Milson, An extension of Bochner’s problem: excep-tional invariant subspaces. J. Approx. Theory 162 (2010), no. 5, 987-1006 Zbl 1214.34079 MR 2610341 · Zbl 1214.34079 · doi:10.1016/j.jat.2009.11.002
[21] D. Gómez-Ullate, N. Kamran, and R. Milson, Two-step Darboux transformations and exceptional Laguerre polynomials. J. Math. Anal. Appl. 387 (2012), no. 1, 410-418 Zbl 1232.33013 MR 2845760 · Zbl 1232.33013 · doi:10.1016/j.jmaa.2011.09.014
[22] D. Gómez-Ullate, N. Kamran, and R. Milson, A conjecture on exceptional orthogonal polynomials. Found. Comput. Math. 13 (2013), no. 4, 615-666 Zbl 1282.33019 MR 3085680 · Zbl 1282.33019 · doi:10.1007/s10208-012-9128-6
[23] Y. Grandati, Multistep DBT and regular rational extensions of the isotonic oscillator. Ann. Physics 327 (2012), no. 10, 2411-2431 Zbl 1255.81169 MR 2970643 · Zbl 1255.81169 · doi:10.1016/j.aop.2012.07.004
[24] J. S. Kelly, C. Liaw, and J. Osborn, Moment representations of exceptional X 1 orthogonal polynomials. J. Math. Anal. Appl. 455 (2017), no. 2, 1848-1869 Zbl 1370.33010 MR 3671258 · Zbl 1370.33010 · doi:10.1016/j.jmaa.2017.05.037
[25] C. Liaw, L. Littlejohn, and J. S. Kelly, Spectral analysis for the exceptional X m -Jacobi equation. Electron. J. Differential Equations (2015), article no. 194 Zbl 1320.33017 MR 3386555 · Zbl 1320.33017
[26] C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart, The spectral analysis of three families of exceptional Laguerre polynomials. J. Approx. Theory 202 (2016), 5-41 Zbl 1333.33018 MR 3440071 · Zbl 1333.33018 · doi:10.1016/j.jat.2015.11.001
[27] C. Liaw, L. L. Littlejohn, J. Stewart, and Q. Wicks, A spectral study of the second-order exceptional X 1 -Jacobi differential expression and a related non-classical Jacobi differen-tial expression. J. Math. Anal. Appl. 422 (2015), no. 1, 212-239 Zbl 1303.33012 MR 3263455 · Zbl 1303.33012 · doi:10.1016/j.jmaa.2014.08.016
[28] M. Marletta and A. Zettl, The Friedrichs extension of singular differential operators. J. Differential Equations 160 (2000), no. 2, 404-421 Zbl 0954.47012 MR 1736997 · Zbl 0954.47012 · doi:10.1006/jdeq.1999.3685
[29] I. Marquette and C. Quesne, New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials. J. Math. Phys. 54 (2013), no. 4, article no. 042102 Zbl 1282.70036 MR 3088222 · Zbl 1282.70036 · doi:10.1063/1.4798807
[30] B. Midya and B. Roy, Exceptional orthogonal polynomials and exactly solvable potentials in position dependent mass Schrödinger Hamiltonians. Phys. Lett. A 373 (2009), no. 45, 4117-4122 Zbl 1234.81072 MR 2552404 · Zbl 1234.81072 · doi:10.1016/j.physleta.2009.09.030
[31] M. A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert space. Frederick Ungar, New York, 1968 Zbl 0227.34020 MR 0262880 · Zbl 0227.34020
[32] M. Noumi, Painlevé equations through symmetry. Transl. Math. Monogr. 223, American Mathematical Society, Providence, RI, 2004 Zbl 1077.34003 MR 2044201 · doi:10.1090/mmono/223
[33] S. Odake and R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 679 (2009), no. 4, 414-417 MR 2569488 · doi:10.1016/j.physletb.2009.08.004
[34] S. Odake and R. Sasaki, Another set of infinitely many exceptional .X ‘/ Laguerre poly-nomials. Phys. Lett. B 684 (2010), no. 2-3, 173-176 MR 2588057 · doi:10.1016/j.physletb.2009.12.062
[35] G. Post and A. Turbiner, Classification of linear differential operators with an invariant subspace of monomials. Russian J. Math. Phys. 3 (1995), no. 1, 113-122 Zbl 0913.34069 MR 1337491 · Zbl 0913.34069
[36] C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and super-symmetry. J. Phys. A 41 (2008), no. 39, article no. 392001 Zbl 1192.81174 MR 2439200 · Zbl 1192.81174 · doi:10.1088/1751-8113/41/39/392001
[37] R. Sasaki, S. Tsujimoto, and A. Zhedanov, Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux-Crum transformations. J. Phys. A 43 (2010), no. 31, article no. 315204 Zbl 1200.33013 MR 2665675 · Zbl 1200.33013 · doi:10.1088/1751-8113/43/31/315204
[38] B. Simon, Spectral analysis of rank one perturbations and applications. In Mathematical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), pp. 109-149, CRM Proc. Lecture Notes 8, American Mathematical Society, Providence, RI, 1995 Zbl 0824.47019 MR 1332038 · Zbl 0824.47019 · doi:10.1090/crmp/008/04
[39] B. Simon, Trace ideals and their applications. Second edn., Math. Surveys Monogr. 120, American Mathematical Society, Providence, RI, 2005 Zbl 1074.47001 MR 2154153 · doi:10.1090/surv/120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.