×

A groupoid approach to regular \(\ast \)-semigroups. (English) Zbl 1531.20071

Summary: In this paper we develop a new groupoid-based structure theory for the class of regular \(\ast \)-semigroups. This class occupies something of a ‘sweet spot’ between the important classes of inverse and regular semigroups, and contains many natural examples. Some of the most significant families include the partition, Brauer and Temperley-Lieb monoids, among other diagram monoids. Our main result is that the category of regular \(\ast \)-semigroups is isomorphic to the category of so-called ‘chained projection groupoids’. Such a groupoid is in fact a triple \((P, \mathcal{G}, \varepsilon)\), where:
\(\bullet\)
\(P\) is a projection algebra (in the sense of Imaoka and Jones),
\(\bullet\)
\(\mathcal{G}\) is an ordered groupoid with object set \(P\), and
\(\bullet\)
\(\varepsilon : \mathcal{C} \to \mathcal{G}\) is a special functor, where \(\mathcal{C}\) is a certain natural ‘chain groupoid’ constructed from \(P\).
Roughly speaking: the groupoid \(\mathcal{G} = \mathcal{G}(S)\) remembers only the ‘easy’ products in a regular \(\ast \)-semigroup \(S\); the projection algebra \(P = P(S)\) remembers only the ‘conjugation action’ of the projections of \(S\); and the functor \(\varepsilon = \varepsilon(S)\) tells us how \(\mathcal{G}\) and \(P\) ‘fit together’ in order to recover the entire structure of \(S\). In this way, we obtain the first completely general structure theorem for regular \(\ast \)-semigroups. As a consequence of our main result, we give a new proof of the celebrated Ehresmann-Schein-Nambooripad Theorem, which establishes an isomorphism between the categories of inverse semigroups and inductive groupoids. Other applications will be given in future works. We consider several examples along the way, and pose a number of problems that we believe are worthy of further attention.

MSC:

20M10 General structure theory for semigroups
20M50 Connections of semigroups with homological algebra and category theory
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
20M17 Regular semigroups
20M20 Semigroups of transformations, relations, partitions, etc.
20M05 Free semigroups, generators and relations, word problems

References:

[1] Adair, C. L., Bands with an involution. J. Algebra, 2, 297-314 (1982) · Zbl 0501.20040
[2] Armstrong, S., Structure of concordant semigroups. J. Algebra, 1, 205-260 (1988) · Zbl 0653.20064
[3] Auinger, K., Krohn-Rhodes complexity of Brauer type semigroups. Port. Math., 4, 341-360 (2012) · Zbl 1267.20082
[4] Auinger, K., Pseudovarieties generated by Brauer type monoids. Forum Math., 1, 1-24 (2014) · Zbl 1305.20066
[5] Auinger, K.; Chen, Y.; Hu, X.; Luo, Y.; Volkov, M. V., The finite basis problem for Kauffman monoids. Algebra Univers., 3-4, 333-350 (2015) · Zbl 1332.20056
[6] Azeef Muhammed, P. A.; Volkov, M. V., Inductive groupoids and cross-connections of regular semigroups. Acta Math. Hung., 1, 80-120 (2019) · Zbl 1438.20063
[7] Azeef Muhammed, P. A.; Volkov, M. V., A tale of two categories: inductive groupoids and cross-connections. J. Pure Appl. Algebra, 7 (2022) · Zbl 1490.18004
[8] Banaschewski, B., Brandt groupoids and semigroups. Semigroup Forum, 4, 307-311 (1979)
[9] Benkart, G.; Halverson, T., Motzkin algebras. Eur. J. Comb., 473-502 (2014) · Zbl 1284.05333
[10] Benkart, G.; Halverson, T., Partition algebras \(\mathsf{P}_k(n)\) with \(2 k > n\) and the fundamental theorems of invariant theory for the symmetric group \(\mathsf{S}_n\). J. Lond. Math. Soc. (2), 1, 194-224 (2019) · Zbl 1411.05274
[11] Birkhoff, G., Rings of sets. Duke Math. J., 3, 443-454 (1937) · JFM 63.0832.02
[12] Borisavljević, M.; Došen, K.; Petrić, Z., Kauffman monoids. J. Knot Theory Ramif., 2, 127-143 (2002) · Zbl 1025.57015
[13] Brauer, R., On algebras which are connected with the semisimple continuous groups. Ann. Math. (2), 4, 857-872 (1937) · JFM 63.0873.02
[14] Brittenham, M.; Margolis, S. W.; Meakin, J., Subgroups of the free idempotent generated semigroups need not be free. J. Algebra, 10, 3026-3042 (2009) · Zbl 1177.20064
[15] Brownlowe, N.; Larsen, N. S.; Stammeier, N., On \(C^\ast \)-algebras associated to right LCM semigroups. Trans. Am. Math. Soc., 1, 31-68 (2017) · Zbl 1368.46041
[16] Burris, S.; Sankappanavar, H. P., A Course in Universal Algebra. Graduate Texts in Mathematics (1981), Springer-Verlag: Springer-Verlag New York-Berlin · Zbl 0478.08001
[17] Buss, A.; Exel, R.; Meyer, R., Reduced \(\operatorname{C}^\ast \)-algebras of Fell bundles over inverse semigroups. Isr. J. Math., 1, 225-274 (2017) · Zbl 1377.46037
[18] Clark, D. M.; Davey, B. A., Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0910.08001
[19] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, vol. I. Mathematical Surveys (1961), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 0111.03403
[20] DeWolf, D.; Pronk, D., The Ehresmann-Schein-Nambooripad theorem for inverse categories. Theory Appl. Categ. (2018) · Zbl 1406.18003
[21] Dolinka, I., A note on free idempotent generated semigroups over the full monoid of partial transformations. Commun. Algebra, 2, 565-573 (2013) · Zbl 1267.20091
[22] Dolinka, I.; East, J.; Evangelou, A.; FitzGerald, D.; Ham, N.; Hyde, J.; Loughlin, N., Enumeration of idempotents in diagram semigroups and algebras. J. Comb. Theory, Ser. A, 119-152 (2015) · Zbl 1305.05234
[23] Dolinka, I.; East, J.; Evangelou, A.; FitzGerald, D.; Ham, N.; Hyde, J.; Loughlin, N.; Mitchell, J. D., Enumeration of idempotents in planar diagram monoids. J. Algebra, 351-385 (2019) · Zbl 1403.05164
[24] Dolinka, I.; East, J.; Gray, R. D., Motzkin monoids and partial Brauer monoids. J. Algebra, 251-298 (2017) · Zbl 1406.20065
[25] Dolinka, I.; Gray, R. D., Maximal subgroups of free idempotent generated semigroups over the full linear monoid. Trans. Am. Math. Soc., 1, 419-455 (2014) · Zbl 1297.20059
[26] Dolinka, I.; Gray, R. D.; Ruškuc, N., On regularity and the word problem for free idempotent generated semigroups. Proc. Lond. Math. Soc. (3), 3, 401-432 (2017) · Zbl 1434.20039
[27] Dolinka, I.; Ruškuc, N., Every group is a maximal subgroup of the free idempotent generated semigroup over a band. Int. J. Algebra Comput., 3, 573-581 (2013) · Zbl 1281.20068
[28] Drazin, M. P., Regular semigroups with involution, 29-46 · Zbl 0456.20032
[29] Easdown, D., Biordered sets come from semigroups. J. Algebra, 2, 581-591 (1985) · Zbl 0602.20055
[30] East, J., Generators and relations for partition monoids and algebras. J. Algebra, 1-26 (2011) · Zbl 1277.20069
[31] East, J., On the singular part of the partition monoid. Int. J. Algebra Comput., 1-2, 147-178 (2011) · Zbl 1229.20066
[32] East, J., Infinite partition monoids. Int. J. Algebra Comput., 4, 429-460 (2014) · Zbl 1305.20070
[33] J. East, P.A. Azeef Muhammed, A groupoid approach to fundamental regular ⁎-semigroups, in preparation.
[34] East, J.; FitzGerald, D. G., The semigroup generated by the idempotents of a partition monoid. J. Algebra, 108-133 (2012) · Zbl 1281.20077
[35] East, J.; Gray, R. D., Diagram monoids and Graham-Houghton graphs: idempotents and generating sets of ideals. J. Comb. Theory, Ser. A, 63-128 (2017) · Zbl 1351.05227
[36] J. East, R.D. Gray, P.A. Azeef Muhammed, N. Ruškuc, Maximal subgroups of free idempotent- and projection-generated semigroups over finite partition monoids, in preparation.
[37] J. East, R.D. Gray, P.A. Azeef Muhammed, N. Ruškuc, Projection algebras and free idempotent- and projection-generated regular ⁎-semigroups, in preparation.
[38] East, J.; Mitchell, J. D.; Ruškuc, N.; Torpey, M., Congruence lattices of finite diagram monoids. Adv. Math., 931-1003 (2018) · Zbl 1400.20060
[39] East, J.; Ruškuc, N., Classification of congruences of twisted partition monoids. Adv. Math. (2022) · Zbl 1485.20141
[40] East, J.; Ruškuc, N., Congruences on infinite partition and partial Brauer monoids. Mosc. Math. J., 2, 295-372 (2022) · Zbl 1530.20191
[41] East, J.; Ruškuc, N., Properties of congruences of twisted partition monoids and their lattices. J. Lond. Math. Soc. (2), 1, 311-357 (2022) · Zbl 1523.20106
[42] East, J.; Ruškuc, N., Congruence lattices of ideals in categories and (partial) semigroups. Mem. Am. Math. Soc., 1408 (2023), vii+129 · Zbl 1515.20009
[43] Ehresmann, C., Gattungen von lokalen Strukturen. Jahresber. Dtsch. Math.-Ver., Abt. 1, 49-77 (1957) · Zbl 0097.37803
[44] Ehresmann, C., Catégories inductives et pseudo-groupes. Ann. Inst. Fourier (Grenoble), 307-332 (1960) · Zbl 0099.26002
[45] Farthing, C.; Muhly, P. S.; Yeend, T., Higher-rank graph \(C^\ast \)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum, 2, 159-187 (2005) · Zbl 1099.46036
[46] Fitz-Gerald, D. G., On inverses of products of idempotents in regular semigroups. J. Aust. Math. Soc., 335-337 (1972) · Zbl 0244.20079
[47] FitzGerald, D. G., Factorizable inverse monoids. Semigroup Forum, 3, 484-509 (2010) · Zbl 1202.20067
[48] FitzGerald, D. G., Groupoids on a skew lattice of objects. Art Discrete Appl. Math., 2 (2019) · Zbl 1481.20195
[49] FitzGerald, D. G.; Kinyon, M. K., Trace and pseudo-products: restriction-like semigroups with a band of projections. Semigroup Forum, 3, 848-866 (2021) · Zbl 1485.20136
[50] FitzGerald, D. G.; Lau, K. W., On the partition monoid and some related semigroups. Bull. Aust. Math. Soc., 2, 273-288 (2011) · Zbl 1230.20061
[51] The GAP Group, GAP - Groups, Algorithms, and Programming.
[52] Gould, V., Restriction and Ehresmann semigroups, 265-288 · Zbl 1264.20067
[53] Gould, V.; Hollings, C., Restriction semigroups and inductive constellations. Commun. Algebra, 1, 261-287 (2010) · Zbl 1251.20062
[54] Gould, V.; Wang, Y., Beyond orthodox semigroups. J. Algebra, 209-230 (2012) · Zbl 1275.20067
[55] Gray, R.; Ruskuc, N., On maximal subgroups of free idempotent generated semigroups. Isr. J. Math., 147-176 (2012) · Zbl 1276.20063
[56] Gray, R.; Ruškuc, N., Maximal subgroups of free idempotent-generated semigroups over the full transformation monoid. Proc. Lond. Math. Soc. (3), 5, 997-1018 (2012) · Zbl 1254.20054
[57] Green, J. A., On the structure of semigroups. Ann. Math. (2), 163-172 (1951) · Zbl 0043.25601
[58] Grillet, P. A., The structure of regular semigroups. I. A representation. Semigroup Forum, 2, 177-183 (1974) · Zbl 0301.20051
[59] Grillet, P. A., The structure of regular semigroups. II. Cross-connections. Semigroup Forum, 3, 254-259 (1974) · Zbl 0296.20034
[60] Grillet, P. A., The structure of regular semigroups. III. The reduced case. Semigroup Forum, 3, 260-265 (1974) · Zbl 0296.20035
[61] Grillet, P. A., The structure of regular semigroups. IV. The general case. Semigroup Forum, 4, 368-373 (1974) · Zbl 0298.20050
[62] Halverson, T.; Ram, A., Partition algebras. Eur. J. Comb., 6, 869-921 (2005) · Zbl 1112.20010
[63] Hartwig, R. E., How to partially order regular elements. Math. Jpn., 1, 1-13 (1980) · Zbl 0442.06006
[64] Heunen, C.; Karvonen, M., Limits in dagger categories. Theory Appl. Categ., 468-513 (2019) · Zbl 1412.18003
[65] Hickey, J. B., Semigroups under a sandwich operation. Proc. Edinb. Math. Soc. (2), 3, 371-382 (1983) · Zbl 0525.20045
[66] Hollings, C., Extending the Ehresmann-Schein-Nambooripad theorem. Semigroup Forum, 3, 453-476 (2010) · Zbl 1204.20082
[67] Hollings, C., The Ehresmann-Schein-Nambooripad theorem and its successors. Eur. J. Pure Appl. Math., 4, 414-450 (2012) · Zbl 1389.20078
[68] Hollings, C. D.; Lawson, M. V., Wagner’s Theory of Generalised Heaps (2017), Springer: Springer Cham · Zbl 1403.20001
[69] Howie, J. M., Fundamentals of Semigroup Theory. London Mathematical Society Monographs. New Series (1995), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York, Oxford Science Publications · Zbl 0835.20077
[70] Imaoka, T., On fundamental regular ⁎-semigroups. Mem. Fac. Sci. Eng., Shimane Univ., 19-23 (1980) · Zbl 0466.20041
[71] Imaoka, T., Prehomomorphisms on regular ⁎-semigroups. Mem. Fac. Sci. Eng., Shimane Univ., 23-27 (1981) · Zbl 0477.20041
[72] Imaoka, T., Some remarks on fundamental regular \(^⁎\)-semigroups, 270-280 · Zbl 0517.20037
[73] Jackson, M.; Volkov, M., The algebra of adjacency patterns: Rees matrix semigroups with reversion, 414-443 · Zbl 1287.08010
[74] Jones, P. R., A common framework for restriction semigroups and regular ⁎-semigroups. J. Pure Appl. Algebra, 3, 618-632 (2012) · Zbl 1257.20058
[75] Jones, V. F.R., Index for subfactors. Invent. Math., 1, 1-25 (1983) · Zbl 0508.46040
[76] Jones, V. F.R., Hecke algebra representations of braid groups and link polynomials. Ann. Math. (2), 2, 335-388 (1987) · Zbl 0631.57005
[77] Jones, V. F.R., The Potts model and the symmetric group, 259-267 · Zbl 0938.20505
[78] Jones, V. F.R., A quotient of the affine Hecke algebra in the Brauer algebra. Enseign. Math. (2), 3-4, 313-344 (1994) · Zbl 0852.20035
[79] Kauffman, L. H., State models and the Jones polynomial. Topology, 3, 395-407 (1987) · Zbl 0622.57004
[80] Kauffman, L. H., An invariant of regular isotopy. Trans. Am. Math. Soc., 2, 417-471 (1990) · Zbl 0763.57004
[81] Khoshkam, M.; Skandalis, G., Regular representation of groupoid \(C^\ast \)-algebras and applications to inverse semigroups. J. Reine Angew. Math., 47-72 (2002) · Zbl 1029.46082
[82] Kitov, N. V.; Volkov, M. V., Identities of the Kauffman monoid \(\mathcal{K}_4\) and of the Jones monoid \(\mathcal{J}_4\), 156-178 · Zbl 1535.20284
[83] Kudryavtseva, G.; Mazorchuk, V., On presentations of Brauer-type monoids. Cent. Eur. J. Math., 3, 413-434 (2006), (electronic) · Zbl 1130.20041
[84] Laca, M.; Raeburn, I.; Ramagge, J.; Whittaker, M. F., Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs. Adv. Math., 268-325 (2018) · Zbl 1392.37007
[85] Larsson, D., Combinatorics on Brauer-type semigroups, U.U.D.M. Project Report 2006:3, Available at
[86] Lau, K. W.; FitzGerald, D. G., Ideal structure of the Kauffman and related monoids. Commun. Algebra, 7, 2617-2629 (2006) · Zbl 1103.47032
[87] Lawson, M. V., Semigroups and ordered categories. I. The reduced case. J. Algebra, 2, 422-462 (1991) · Zbl 0747.18007
[88] Lawson, M. V., Inverse SemigroupsThe Theory of Partial Symmetries (1998), World Scientific Publishing Co., Inc.: World Scientific Publishing Co., Inc. River Edge, NJ · Zbl 1079.20505
[89] Lawson, M. V., Ordered groupoids and left cancellative categories. Semigroup Forum, 3, 458-476 (2004) · Zbl 1053.18001
[90] Lawson, M. V., Non-commutative Stone duality: inverse semigroups, topological groupoids and \(C^\ast \)-algebras. Int. J. Algebra Comput., 6 (2012)
[91] Lawson, M. V., Recent developments in inverse semigroup theory. Semigroup Forum, 1, 103-118 (2020) · Zbl 1471.20043
[92] Lawson, M. V., On Ehresmann semigroups. Semigroup Forum, 3, 953-965 (2021) · Zbl 1508.20083
[93] Lehrer, G.; Zhang, R., The second fundamental theorem of invariant theory for the orthogonal group. Ann. Math. (2), 3, 2031-2054 (2012) · Zbl 1263.20043
[94] Lehrer, G.; Zhang, R. B., The Brauer category and invariant theory. J. Eur. Math. Soc., 9, 2311-2351 (2015) · Zbl 1328.14079
[95] Li, X., Semigroup \(\operatorname{C}^\ast \)-algebras and amenability of semigroups. J. Funct. Anal., 10, 4302-4340 (2012) · Zbl 1243.22006
[96] Li, X., Partial transformation groupoids attached to graphs and semigroups. Int. Math. Res. Not., 5233-5259 (2017) · Zbl 1405.37007
[97] Mac Lane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0906.18001
[98] Malandro, M. E., Enumeration of finite inverse semigroups. Semigroup Forum, 3, 679-723 (2019) · Zbl 1467.20080
[99] Maltcev, V.; Mazorchuk, V., Presentation of the singular part of the Brauer monoid. Math. Bohem., 3, 297-323 (2007) · Zbl 1163.20035
[100] Margolis, S.; Stein, I., Ehresmann semigroups whose categories are EI and their representation theory. J. Algebra, 176-206 (2021) · Zbl 1509.20116
[101] Martin, P., Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J. Knot Theory Ramif., 1, 51-82 (1994) · Zbl 0804.16002
[102] Martin, P., The structure of the partition algebras. J. Algebra, 2, 319-358 (1996) · Zbl 0863.20009
[103] Martin, P.; Mazorchuk, V., On the representation theory of partial Brauer algebras. Q. J. Math., 1, 225-247 (2014) · Zbl 1354.16016
[104] Martin, P. P., The decomposition matrices of the Brauer algebra over the complex field. Trans. Am. Math. Soc., 3, 1797-1825 (2015) · Zbl 1362.16020
[105] Martin, P. P.; Rollet, G., The Potts model representation and a Robinson-Schensted correspondence for the partition algebra. Compos. Math., 2, 237-254 (1998) · Zbl 0899.05070
[106] Mazorchuk, V., Endomorphisms of \(\mathfrak{B}_n, \mathcal{P} \mathfrak{B}_n\), and \(\mathfrak{C}_n\). Commun. Algebra, 7, 3489-3513 (2002) · Zbl 1008.20056
[107] McCune, W., Prover9 and mace4 (2005-2010)
[108] Meakin, J.; Azeef Muhammed, P. A.; Rajan, A. R., The mathematical work of K. S. S. Nambooripad, 107-140 · Zbl 1540.20002
[109] Milan, D.; Steinberg, B., On inverse semigroup \(C^\ast \)-algebras and crossed products. Groups Geom. Dyn., 2, 485-512 (2014) · Zbl 1308.46062
[110] Miller, D. D.; Clifford, A. H., Regular \(\mathcal{D} \)-classes in semigroups. Trans. Am. Math. Soc., 270-280 (1956) · Zbl 0071.02001
[111] J.D. Mitchell, et al., Semigroups - GAP package.
[112] Mitsch, H., A natural partial order for semigroups. Proc. Am. Math. Soc., 3, 384-388 (1986) · Zbl 0596.06015
[113] Munn, W. D., Fundamental inverse semigroups. Quart. J. Math. Oxf. Ser. (2), 157-170 (1970) · Zbl 0219.20047
[114] Nambooripad, K. S.S., Structure of regular semigroups. I. Mem. Am. Math. Soc., 224 (1979), vii+119 · Zbl 0457.20051
[115] Nambooripad, K. S.S., The natural partial order on a regular semigroup. Proc. Edinb. Math. Soc. (2), 3, 249-260 (1980) · Zbl 0459.20054
[116] Nambooripad, K. S.S., Theory of Cross-Connections. Publication (1994), Centre for Mathematical Sciences: Centre for Mathematical Sciences Trivandrum · Zbl 0844.20046
[117] Nambooripad, K. S.S.; Pastijn, F., Subgroups of free idempotent generated regular semigroups. Semigroup Forum, 1, 1-7 (1980) · Zbl 0449.20061
[118] Nambooripad, K. S.S.; Pastijn, F. J.C. M., Regular involution semigroups, 199-249 · Zbl 0697.20048
[119] Nordahl, T. E.; Scheiblich, H. E., Regular ⁎-semigroups. Semigroup Forum, 3, 369-377 (1978) · Zbl 0408.20043
[120] Paterson, A. L.T., Groupoids, Inverse Semigroups, and Their Operator Algebras. Progress in Mathematics (1999), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0913.22001
[121] Paterson, A. L.T., Graph inverse semigroups, groupoids and their \(C^\ast \)-algebras. J. Oper. Theory, 3 suppl., 645-662 (2002) · Zbl 1031.46060
[122] Petrich, M., Certain varieties of completely regular \(^⁎\)-semigroups. Boll. Unione Mat. Ital., B (6), 2, 343-370 (1985) · Zbl 0582.20039
[123] Polák, L., A solution of the word problem for free ⁎-regular semigroups. J. Pure Appl. Algebra, 1, 107-114 (2001) · Zbl 0981.20048
[124] Pontrjagin, L., The general topological theorem of duality for closed sets. Ann. Math. (2), 4, 904-914 (1934) · JFM 60.0531.01
[125] Pontrjagin, L., The theory of topological commutative groups. Ann. Math. (2), 2, 361-388 (1934) · JFM 60.0362.02
[126] Preston, G. B., Inverse semi-groups. J. Lond. Math. Soc., 396-403 (1954) · Zbl 0056.01903
[127] Preston, G. B., Representations of inverse semi-groups. J. Lond. Math. Soc., 411-419 (1954) · Zbl 0056.02001
[128] Priestley, H. A., Representation of distributive lattices by means of ordered stone spaces. Bull. Lond. Math. Soc., 186-190 (1970) · Zbl 0201.01802
[129] Priestley, H. A., Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc., 24, 507-530 (1972) · Zbl 0323.06011
[130] Rees, D., On semi-groups. Proc. Camb. Philos. Soc., 387-400 (1940) · JFM 66.1207.01
[131] Ruškuc, N., Presentations for subgroups of monoids. J. Algebra, 1, 365-380 (1999) · Zbl 0943.20057
[132] Schein, B. M., On the theory of generalized groups. Dokl. Akad. Nauk SSSR, 296-299 (1963)
[133] Stein, I., The representation theory of the monoid of all partial functions on a set and related monoids as EI-category algebras. J. Algebra, 549-569 (2016) · Zbl 1337.20070
[134] Stein, I., Algebras of Ehresmann semigroups and categories. Semigroup Forum, 3, 509-526 (2017) · Zbl 1422.20030
[135] Stein, I., The global dimension of the algebra of the monoid of all partial functions on an \(n\)-set as the algebra of the EI-category of epimorphisms between subsets. J. Pure Appl. Algebra, 8, 3515-3536 (2019) · Zbl 1454.20112
[136] Stein, I., Representation theory of order-related monoids of partial functions as locally trivial category algebras. Algebr. Represent. Theory, 4, 1543-1567 (2020) · Zbl 1457.20050
[137] Stein, I., Algebras of reduced \(E\)-fountain semigroups and the generalized ample identity. Commun. Algebra, 6, 2557-2570 (2022) · Zbl 1514.20223
[138] Steinberg, B., Möbius functions and semigroup representation theory. J. Comb. Theory, Ser. A, 5, 866-881 (2006) · Zbl 1148.20049
[139] Steinberg, B., Möbius functions and semigroup representation theory. II. Character formulas and multiplicities. Adv. Math., 4, 1521-1557 (2008) · Zbl 1155.20057
[140] Steinberg, B., A groupoid approach to discrete inverse semigroup algebras. Adv. Math., 2, 689-727 (2010) · Zbl 1188.22003
[141] Stokes, T., D-semigroups and constellations. Semigroup Forum, 2, 442-462 (2017) · Zbl 1384.20045
[142] Stokes, T., Left restriction monoids from left \(E\)-completions. J. Algebra, 143-185 (2022) · Zbl 1516.20124
[143] Stokes, T., Ordered Ehresmann semigroups and categories. Commun. Algebra, 11, 4805-4821 (2022) · Zbl 1530.06008
[144] Stone, M. H., The theory of representations for Boolean algebras. Trans. Am. Math. Soc., 1, 37-111 (1936) · JFM 62.0033.04
[145] Temperley, H. N.V.; Lieb, E. H., Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A, 1549, 251-280 (1971) · Zbl 0211.56703
[146] The Univalent Foundations Program, Homotopy Type Theory—Univalent Foundations of Mathematics (2013), The Univalent Foundations Program/Institute for Advanced Study (IAS): The Univalent Foundations Program/Institute for Advanced Study (IAS) Princeton, NJ/Princeton, NJ · Zbl 1298.03002
[147] Wagner, V. V., Generalized groups. Dokl. Akad. Nauk SSSR (N. S.), 1119-1122 (1952) · Zbl 0047.25504
[148] Wagner, V. V., The theory of generalized heaps and generalized groups. Sb. Math. N.S., 74, 545-632 (1953) · Zbl 0053.20603
[149] Wang, S., An Ehresmann-Schein-Nambooripad-type theorem for a class of \(P\)-restriction semigroups. Bull. Malays. Math. Sci. Soc., 2, 535-568 (2019) · Zbl 1474.20113
[150] Wang, S., An Ehresmann-Schein-Nambooripad theorem for locally Ehresmann \(P\)-Ehresmann semigroups. Period. Math. Hung., 1, 108-137 (2020) · Zbl 1463.20067
[151] Wang, S., An Ehresmann-Schein-Nambooripad type theorem for DRC-semigroups. Semigroup Forum, 3, 731-757 (2022) · Zbl 1515.20293
[152] Wang, Y., Beyond regular semigroups. Semigroup Forum, 2, 414-448 (2016) · Zbl 1360.20054
[153] Wenzl, H., On the structure of Brauer’s centralizer algebras. Ann. Math. (2), 1, 173-193 (1988) · Zbl 0656.20040
[154] Wilcox, S., Cellularity of diagram algebras as twisted semigroup algebras. J. Algebra, 1, 10-31 (2007) · Zbl 1154.16021
[155] Yamada, M., On the structure of fundamental regular ⁎-semigroups. Studia Sci. Math. Hung., 3-4, 281-288 (1981) · Zbl 0477.20040
[156] Yamada, M., \(p\)-systems in regular semigroups. Semigroup Forum, 2-3, 173-187 (1982) · Zbl 0479.20030
[157] Yang, D.; Dolinka, I.; Gould, V., Free idempotent generated semigroups and endomorphism monoids of free \(G\)-acts. J. Algebra, 133-176 (2015) · Zbl 1341.20057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.